2019-10-03 19:34:19 +03:00

1352 lines
38 KiB
Go

// checker is a partial copy of https://github.com/golang/tools/blob/master/go/analysis/internal/checker
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package checker defines the implementation of the checker commands.
// The same code drives the multi-analysis driver, the single-analysis
// driver that is conventionally provided for convenience along with
// each analysis package, and the test driver.
package goanalysis
import (
"bytes"
"encoding/gob"
"fmt"
"go/ast"
"go/parser"
"go/scanner"
"go/token"
"go/types"
"os"
"reflect"
"runtime"
"runtime/debug"
"sort"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/pkg/errors"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/gcexportdata"
"golang.org/x/tools/go/packages"
"golang.org/x/tools/go/types/objectpath"
"github.com/golangci/golangci-lint/internal/errorutil"
"github.com/golangci/golangci-lint/internal/pkgcache"
"github.com/golangci/golangci-lint/pkg/golinters/goanalysis/load"
"github.com/golangci/golangci-lint/pkg/logutils"
)
var (
// Debug is a set of single-letter flags:
//
// f show [f]acts as they are created
// p disable [p]arallel execution of analyzers
// s do additional [s]anity checks on fact types and serialization
// t show [t]iming info (NB: use 'p' flag to avoid GC/scheduler noise)
// v show [v]erbose logging
//
debugf = logutils.Debug("goanalysis")
factsDebugf = logutils.Debug("goanalysis/facts")
factsInheritDebugf = logutils.Debug("goanalysis/facts/inherit")
factsExportDebugf = logutils.Debug("goanalysis/facts")
isFactsExportDebug = logutils.HaveDebugTag("goanalysis/facts/export")
isMemoryDebug = logutils.HaveDebugTag("goanalysis/memory")
factsCacheDebugf = logutils.Debug("goanalysis/facts/cache")
analyzeDebugf = logutils.Debug("goanalysis/analyze")
Debug = os.Getenv("GL_GOANALYSIS_DEBUG")
unsafePkgName = "unsafe"
)
type Diagnostic struct {
analysis.Diagnostic
Analyzer *analysis.Analyzer
Position token.Position
}
type runner struct {
log logutils.Log
prefix string // ensure unique analyzer names
pkgCache *pkgcache.Cache
loadGuard *load.Guard
loadMode LoadMode
}
func newRunner(prefix string, logger logutils.Log, pkgCache *pkgcache.Cache, loadGuard *load.Guard, loadMode LoadMode) *runner {
return &runner{
prefix: prefix,
log: logger,
pkgCache: pkgCache,
loadGuard: loadGuard,
loadMode: loadMode,
}
}
// Run loads the packages specified by args using go/packages,
// then applies the specified analyzers to them.
// Analysis flags must already have been set.
// It provides most of the logic for the main functions of both the
// singlechecker and the multi-analysis commands.
// It returns the appropriate exit code.
func (r *runner) run(analyzers []*analysis.Analyzer, initialPackages []*packages.Package) ([]Diagnostic, []error) {
debugf("Analyzing %d packages on load mode %s", len(initialPackages), r.loadMode)
defer r.pkgCache.Trim()
roots := r.analyze(initialPackages, analyzers)
return extractDiagnostics(roots)
}
type actKey struct {
*analysis.Analyzer
*packages.Package
}
func (r *runner) markAllActions(a *analysis.Analyzer, pkg *packages.Package, markedActions map[actKey]struct{}) {
k := actKey{a, pkg}
if _, ok := markedActions[k]; ok {
return
}
for _, req := range a.Requires {
r.markAllActions(req, pkg, markedActions)
}
if len(a.FactTypes) != 0 {
for path := range pkg.Imports {
r.markAllActions(a, pkg.Imports[path], markedActions)
}
}
markedActions[k] = struct{}{}
}
func (r *runner) makeAction(a *analysis.Analyzer, pkg *packages.Package,
initialPkgs map[*packages.Package]bool, actions map[actKey]*action, actAlloc *actionAllocator) *action {
k := actKey{a, pkg}
act, ok := actions[k]
if ok {
return act
}
act = actAlloc.alloc()
act.a = a
act.pkg = pkg
act.log = r.log
act.prefix = r.prefix
act.pkgCache = r.pkgCache
act.isInitialPkg = initialPkgs[pkg]
act.needAnalyzeSource = initialPkgs[pkg]
act.analysisDoneCh = make(chan struct{})
depsCount := len(a.Requires)
if len(a.FactTypes) > 0 {
depsCount += len(pkg.Imports)
}
act.deps = make([]*action, 0, depsCount)
// Add a dependency on each required analyzers.
for _, req := range a.Requires {
act.deps = append(act.deps, r.makeAction(req, pkg, initialPkgs, actions, actAlloc))
}
r.buildActionFactDeps(act, a, pkg, initialPkgs, actions, actAlloc)
actions[k] = act
return act
}
func (r *runner) buildActionFactDeps(act *action, a *analysis.Analyzer, pkg *packages.Package,
initialPkgs map[*packages.Package]bool, actions map[actKey]*action, actAlloc *actionAllocator) {
// An analysis that consumes/produces facts
// must run on the package's dependencies too.
if len(a.FactTypes) == 0 {
return
}
act.objectFacts = make(map[objectFactKey]analysis.Fact)
act.packageFacts = make(map[packageFactKey]analysis.Fact)
paths := make([]string, 0, len(pkg.Imports))
for path := range pkg.Imports {
paths = append(paths, path)
}
sort.Strings(paths) // for determinism
for _, path := range paths {
dep := r.makeAction(a, pkg.Imports[path], initialPkgs, actions, actAlloc)
act.deps = append(act.deps, dep)
}
// Need to register fact types for pkgcache proper gob encoding.
for _, f := range a.FactTypes {
gob.Register(f)
}
}
type actionAllocator struct {
allocatedActions []action
nextFreeIndex int
}
func newActionAllocator(maxCount int) *actionAllocator {
return &actionAllocator{
allocatedActions: make([]action, maxCount),
nextFreeIndex: 0,
}
}
func (actAlloc *actionAllocator) alloc() *action {
if actAlloc.nextFreeIndex == len(actAlloc.allocatedActions) {
panic(fmt.Sprintf("Made too many allocations of actions: %d allowed", len(actAlloc.allocatedActions)))
}
act := &actAlloc.allocatedActions[actAlloc.nextFreeIndex]
actAlloc.nextFreeIndex++
return act
}
//nolint:gocritic
func (r *runner) prepareAnalysis(pkgs []*packages.Package,
analyzers []*analysis.Analyzer) (map[*packages.Package]bool, []*action, []*action) {
// Construct the action graph.
// Each graph node (action) is one unit of analysis.
// Edges express package-to-package (vertical) dependencies,
// and analysis-to-analysis (horizontal) dependencies.
// This place is memory-intensive: e.g. Istio project has 120k total actions.
// Therefore optimize it carefully.
markedActions := make(map[actKey]struct{}, len(analyzers)*len(pkgs))
for _, a := range analyzers {
for _, pkg := range pkgs {
r.markAllActions(a, pkg, markedActions)
}
}
totalActionsCount := len(markedActions)
actions := make(map[actKey]*action, totalActionsCount)
actAlloc := newActionAllocator(totalActionsCount)
initialPkgs := make(map[*packages.Package]bool, len(pkgs))
for _, pkg := range pkgs {
initialPkgs[pkg] = true
}
// Build nodes for initial packages.
roots := make([]*action, 0, len(pkgs)*len(analyzers))
for _, a := range analyzers {
for _, pkg := range pkgs {
root := r.makeAction(a, pkg, initialPkgs, actions, actAlloc)
root.isroot = true
roots = append(roots, root)
}
}
allActions := make([]*action, 0, len(actions))
for _, act := range actions {
allActions = append(allActions, act)
}
debugf("Built %d actions", len(actions))
return initialPkgs, allActions, roots
}
func (r *runner) analyze(pkgs []*packages.Package, analyzers []*analysis.Analyzer) []*action {
initialPkgs, actions, rootActions := r.prepareAnalysis(pkgs, analyzers)
actionPerPkg := map[*packages.Package][]*action{}
for _, act := range actions {
actionPerPkg[act.pkg] = append(actionPerPkg[act.pkg], act)
}
// Fill Imports field.
loadingPackages := map[*packages.Package]*loadingPackage{}
var dfs func(pkg *packages.Package)
dfs = func(pkg *packages.Package) {
if loadingPackages[pkg] != nil {
return
}
imports := map[string]*loadingPackage{}
for impPath, imp := range pkg.Imports {
dfs(imp)
impLp := loadingPackages[imp]
impLp.dependents++
imports[impPath] = impLp
}
loadingPackages[pkg] = &loadingPackage{
pkg: pkg,
imports: imports,
isInitial: initialPkgs[pkg],
log: r.log,
actions: actionPerPkg[pkg],
loadGuard: r.loadGuard,
dependents: 1, // self dependent
}
}
for _, act := range actions {
dfs(act.pkg)
}
// Limit memory and IO usage.
gomaxprocs := runtime.GOMAXPROCS(-1)
debugf("Analyzing at most %d packages in parallel", gomaxprocs)
loadSem := make(chan struct{}, gomaxprocs)
var wg sync.WaitGroup
debugf("There are %d initial and %d total packages", len(initialPkgs), len(loadingPackages))
for _, lp := range loadingPackages {
if lp.isInitial {
wg.Add(1)
go func(lp *loadingPackage) {
lp.analyzeRecursive(r.loadMode, loadSem)
wg.Done()
}(lp)
}
}
wg.Wait()
return rootActions
}
//nolint:nakedret
func extractDiagnostics(roots []*action) (retDiags []Diagnostic, retErrors []error) {
extracted := make(map[*action]bool)
var extract func(*action)
var visitAll func(actions []*action)
visitAll = func(actions []*action) {
for _, act := range actions {
if !extracted[act] {
extracted[act] = true
visitAll(act.deps)
extract(act)
}
}
}
// De-duplicate diagnostics by position (not token.Pos) to
// avoid double-reporting in source files that belong to
// multiple packages, such as foo and foo.test.
type key struct {
token.Position
*analysis.Analyzer
message string
}
seen := make(map[key]bool)
extract = func(act *action) {
if act.err != nil {
if pe, ok := act.err.(*errorutil.PanicError); ok {
panic(pe)
}
retErrors = append(retErrors, errors.Wrap(act.err, act.a.Name))
return
}
if act.isroot {
for _, diag := range act.diagnostics {
// We don't display a.Name/f.Category
// as most users don't care.
posn := act.pkg.Fset.Position(diag.Pos)
k := key{posn, act.a, diag.Message}
if seen[k] {
continue // duplicate
}
seen[k] = true
retDiags = append(retDiags, Diagnostic{Diagnostic: diag, Analyzer: act.a, Position: posn})
}
}
}
visitAll(roots)
return
}
// NeedFacts reports whether any analysis required by the specified set
// needs facts. If so, we must load the entire program from source.
func NeedFacts(analyzers []*analysis.Analyzer) bool {
seen := make(map[*analysis.Analyzer]bool)
var q []*analysis.Analyzer // for BFS
q = append(q, analyzers...)
for len(q) > 0 {
a := q[0]
q = q[1:]
if !seen[a] {
seen[a] = true
if len(a.FactTypes) > 0 {
return true
}
q = append(q, a.Requires...)
}
}
return false
}
// An action represents one unit of analysis work: the application of
// one analysis to one package. Actions form a DAG, both within a
// package (as different analyzers are applied, either in sequence or
// parallel), and across packages (as dependencies are analyzed).
type action struct {
a *analysis.Analyzer
pkg *packages.Package
pass *analysis.Pass
deps []*action
objectFacts map[objectFactKey]analysis.Fact
packageFacts map[packageFactKey]analysis.Fact
result interface{}
diagnostics []analysis.Diagnostic
err error
log logutils.Log
prefix string
pkgCache *pkgcache.Cache
analysisDoneCh chan struct{}
loadCachedFactsDone bool
loadCachedFactsOk bool
isroot bool
isInitialPkg bool
needAnalyzeSource bool
}
type objectFactKey struct {
obj types.Object
typ reflect.Type
}
type packageFactKey struct {
pkg *types.Package
typ reflect.Type
}
func (act *action) String() string {
return fmt.Sprintf("%s@%s", act.a, act.pkg)
}
func (act *action) loadCachedFacts() bool {
if act.loadCachedFactsDone { // can't be set in parallel
return act.loadCachedFactsOk
}
res := func() bool {
if act.isInitialPkg {
return true // load cached facts only for non-initial packages
}
if len(act.a.FactTypes) == 0 {
return true // no need to load facts
}
return act.loadPersistedFacts()
}()
act.loadCachedFactsDone = true
act.loadCachedFactsOk = res
return res
}
func (act *action) waitUntilDependingAnalyzersWorked() {
for _, dep := range act.deps {
if dep.pkg == act.pkg {
<-dep.analysisDoneCh
}
}
}
type IllTypedError struct {
Pkg *packages.Package
}
func (e *IllTypedError) Error() string {
return fmt.Sprintf("errors in package: %v", e.Pkg.Errors)
}
func (act *action) analyzeSafe() {
defer func() {
if p := recover(); p != nil {
act.err = errorutil.NewPanicError(fmt.Sprintf("%s: package %q (isInitialPkg: %t, needAnalyzeSource: %t): %s",
act.a.Name, act.pkg.Name, act.isInitialPkg, act.needAnalyzeSource, p), debug.Stack())
}
}()
act.analyze()
}
func (act *action) analyze() {
defer close(act.analysisDoneCh) // unblock actions depending on this action
if !act.needAnalyzeSource {
return
}
// TODO(adonovan): uncomment this during profiling.
// It won't build pre-go1.11 but conditional compilation
// using build tags isn't warranted.
//
// ctx, task := trace.NewTask(context.Background(), "exec")
// trace.Log(ctx, "pass", act.String())
// defer task.End()
// Record time spent in this node but not its dependencies.
// In parallel mode, due to GC/scheduler contention, the
// time is 5x higher than in sequential mode, even with a
// semaphore limiting the number of threads here.
// So use -debug=tp.
defer func(now time.Time) {
analyzeDebugf("go/analysis: %s: %s: analyzed package %q in %s", act.prefix, act.a.Name, act.pkg.Name, time.Since(now))
}(time.Now())
// Report an error if any dependency failed.
var failed []string
for _, dep := range act.deps {
if dep.err != nil {
failed = append(failed, dep.String())
}
}
if failed != nil {
sort.Strings(failed)
act.err = fmt.Errorf("failed prerequisites: %s", strings.Join(failed, ", "))
return
}
// Plumb the output values of the dependencies
// into the inputs of this action. Also facts.
inputs := make(map[*analysis.Analyzer]interface{})
startedAt := time.Now()
for _, dep := range act.deps {
if dep.pkg == act.pkg {
// Same package, different analysis (horizontal edge):
// in-memory outputs of prerequisite analyzers
// become inputs to this analysis pass.
inputs[dep.a] = dep.result
} else if dep.a == act.a { // (always true)
// Same analysis, different package (vertical edge):
// serialized facts produced by prerequisite analysis
// become available to this analysis pass.
inheritFacts(act, dep)
}
}
factsDebugf("%s: Inherited facts in %s", act, time.Since(startedAt))
// Run the analysis.
pass := &analysis.Pass{
Analyzer: act.a,
Fset: act.pkg.Fset,
Files: act.pkg.Syntax,
OtherFiles: act.pkg.OtherFiles,
Pkg: act.pkg.Types,
TypesInfo: act.pkg.TypesInfo,
TypesSizes: act.pkg.TypesSizes,
ResultOf: inputs,
Report: func(d analysis.Diagnostic) { act.diagnostics = append(act.diagnostics, d) },
ImportObjectFact: act.importObjectFact,
ExportObjectFact: act.exportObjectFact,
ImportPackageFact: act.importPackageFact,
ExportPackageFact: act.exportPackageFact,
AllObjectFacts: act.allObjectFacts,
AllPackageFacts: act.allPackageFacts,
}
act.pass = pass
var err error
if act.pkg.IllTyped {
// It looks like there should be !pass.Analyzer.RunDespiteErrors
// but govet's cgocall crashes on it. Govet itself contains !pass.Analyzer.RunDespiteErrors condition here
// but it exit before it if packages.Load have failed.
err = errors.Wrap(&IllTypedError{Pkg: act.pkg}, "analysis skipped")
} else {
startedAt = time.Now()
act.result, err = pass.Analyzer.Run(pass)
analyzedIn := time.Since(startedAt)
if analyzedIn > time.Millisecond*10 {
debugf("%s: run analyzer in %s", act, analyzedIn)
}
}
act.err = err
// disallow calls after Run
pass.ExportObjectFact = nil
pass.ExportPackageFact = nil
if err := act.persistFactsToCache(); err != nil {
act.log.Warnf("Failed to persist facts to cache: %s", err)
}
}
// inheritFacts populates act.facts with
// those it obtains from its dependency, dep.
func inheritFacts(act, dep *action) {
serialize := false
for key, fact := range dep.objectFacts {
// Filter out facts related to objects
// that are irrelevant downstream
// (equivalently: not in the compiler export data).
if !exportedFrom(key.obj, dep.pkg.Types) {
factsInheritDebugf("%v: discarding %T fact from %s for %s: %s", act, fact, dep, key.obj, fact)
continue
}
// Optionally serialize/deserialize fact
// to verify that it works across address spaces.
if serialize {
var err error
fact, err = codeFact(fact)
if err != nil {
act.log.Panicf("internal error: encoding of %T fact failed in %v", fact, act)
}
}
factsInheritDebugf("%v: inherited %T fact for %s: %s", act, fact, key.obj, fact)
act.objectFacts[key] = fact
}
for key, fact := range dep.packageFacts {
// TODO: filter out facts that belong to
// packages not mentioned in the export data
// to prevent side channels.
// Optionally serialize/deserialize fact
// to verify that it works across address spaces
// and is deterministic.
if serialize {
var err error
fact, err = codeFact(fact)
if err != nil {
act.log.Panicf("internal error: encoding of %T fact failed in %v", fact, act)
}
}
factsInheritDebugf("%v: inherited %T fact for %s: %s", act, fact, key.pkg.Path(), fact)
act.packageFacts[key] = fact
}
}
// codeFact encodes then decodes a fact,
// just to exercise that logic.
func codeFact(fact analysis.Fact) (analysis.Fact, error) {
// We encode facts one at a time.
// A real modular driver would emit all facts
// into one encoder to improve gob efficiency.
var buf bytes.Buffer
if err := gob.NewEncoder(&buf).Encode(fact); err != nil {
return nil, err
}
// Encode it twice and assert that we get the same bits.
// This helps detect nondeterministic Gob encoding (e.g. of maps).
var buf2 bytes.Buffer
if err := gob.NewEncoder(&buf2).Encode(fact); err != nil {
return nil, err
}
if !bytes.Equal(buf.Bytes(), buf2.Bytes()) {
return nil, fmt.Errorf("encoding of %T fact is nondeterministic", fact)
}
newFact := reflect.New(reflect.TypeOf(fact).Elem()).Interface().(analysis.Fact)
if err := gob.NewDecoder(&buf).Decode(newFact); err != nil {
return nil, err
}
return newFact, nil
}
// exportedFrom reports whether obj may be visible to a package that imports pkg.
// This includes not just the exported members of pkg, but also unexported
// constants, types, fields, and methods, perhaps belonging to oether packages,
// that find there way into the API.
// This is an overapproximation of the more accurate approach used by
// gc export data, which walks the type graph, but it's much simpler.
//
// TODO(adonovan): do more accurate filtering by walking the type graph.
func exportedFrom(obj types.Object, pkg *types.Package) bool {
switch obj := obj.(type) {
case *types.Func:
return obj.Exported() && obj.Pkg() == pkg ||
obj.Type().(*types.Signature).Recv() != nil
case *types.Var:
return obj.Exported() && obj.Pkg() == pkg ||
obj.IsField()
case *types.TypeName, *types.Const:
return true
}
return false // Nil, Builtin, Label, or PkgName
}
// importObjectFact implements Pass.ImportObjectFact.
// Given a non-nil pointer ptr of type *T, where *T satisfies Fact,
// importObjectFact copies the fact value to *ptr.
func (act *action) importObjectFact(obj types.Object, ptr analysis.Fact) bool {
if obj == nil {
panic("nil object")
}
key := objectFactKey{obj, act.factType(ptr)}
if v, ok := act.objectFacts[key]; ok {
reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
return true
}
return false
}
// exportObjectFact implements Pass.ExportObjectFact.
func (act *action) exportObjectFact(obj types.Object, fact analysis.Fact) {
if obj.Pkg() != act.pkg.Types {
act.log.Panicf("internal error: in analysis %s of package %s: Fact.Set(%s, %T): can't set facts on objects belonging another package",
act.a, act.pkg, obj, fact)
}
key := objectFactKey{obj, act.factType(fact)}
act.objectFacts[key] = fact // clobber any existing entry
if isFactsExportDebug {
objstr := types.ObjectString(obj, (*types.Package).Name)
factsExportDebugf("%s: object %s has fact %s\n",
act.pkg.Fset.Position(obj.Pos()), objstr, fact)
}
}
func (act *action) allObjectFacts() []analysis.ObjectFact {
out := make([]analysis.ObjectFact, 0, len(act.objectFacts))
for key, fact := range act.objectFacts {
out = append(out, analysis.ObjectFact{
Object: key.obj,
Fact: fact,
})
}
return out
}
// importPackageFact implements Pass.ImportPackageFact.
// Given a non-nil pointer ptr of type *T, where *T satisfies Fact,
// fact copies the fact value to *ptr.
func (act *action) importPackageFact(pkg *types.Package, ptr analysis.Fact) bool {
if pkg == nil {
panic("nil package")
}
key := packageFactKey{pkg, act.factType(ptr)}
if v, ok := act.packageFacts[key]; ok {
reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
return true
}
return false
}
// exportPackageFact implements Pass.ExportPackageFact.
func (act *action) exportPackageFact(fact analysis.Fact) {
key := packageFactKey{act.pass.Pkg, act.factType(fact)}
act.packageFacts[key] = fact // clobber any existing entry
factsDebugf("%s: package %s has fact %s\n",
act.pkg.Fset.Position(act.pass.Files[0].Pos()), act.pass.Pkg.Path(), fact)
}
func (act *action) allPackageFacts() []analysis.PackageFact {
out := make([]analysis.PackageFact, 0, len(act.packageFacts))
for key, fact := range act.packageFacts {
out = append(out, analysis.PackageFact{
Package: key.pkg,
Fact: fact,
})
}
return out
}
func (act *action) factType(fact analysis.Fact) reflect.Type {
t := reflect.TypeOf(fact)
if t.Kind() != reflect.Ptr {
act.log.Fatalf("invalid Fact type: got %T, want pointer", t)
}
return t
}
type Fact struct {
Path string // non-empty only for object facts
Fact analysis.Fact
}
func (act *action) persistFactsToCache() error {
analyzer := act.a
if len(analyzer.FactTypes) == 0 {
return nil
}
// Merge new facts into the package and persist them.
var facts []Fact
for key, fact := range act.packageFacts {
if key.pkg != act.pkg.Types {
// The fact is from inherited facts from another package
continue
}
facts = append(facts, Fact{
Path: "",
Fact: fact,
})
}
for key, fact := range act.objectFacts {
obj := key.obj
if obj.Pkg() != act.pkg.Types {
// The fact is from inherited facts from another package
continue
}
path, err := objectpath.For(obj)
if err != nil {
// The object is not globally addressable
continue
}
facts = append(facts, Fact{
Path: string(path),
Fact: fact,
})
}
factsCacheDebugf("Caching %d facts for package %q and analyzer %s", len(facts), act.pkg.Name, act.a.Name)
key := fmt.Sprintf("%s/facts", analyzer.Name)
return act.pkgCache.Put(act.pkg, key, facts)
}
func (act *action) loadPersistedFacts() bool {
var facts []Fact
key := fmt.Sprintf("%s/facts", act.a.Name)
if err := act.pkgCache.Get(act.pkg, key, &facts); err != nil {
if err != pkgcache.ErrMissing {
act.log.Warnf("Failed to get persisted facts: %s", err)
}
factsCacheDebugf("No cached facts for package %q and analyzer %s", act.pkg.Name, act.a.Name)
return false
}
factsCacheDebugf("Loaded %d cached facts for package %q and analyzer %s", len(facts), act.pkg.Name, act.a.Name)
for _, f := range facts {
if f.Path == "" { // this is a package fact
key := packageFactKey{act.pkg.Types, act.factType(f.Fact)}
act.packageFacts[key] = f.Fact
continue
}
obj, err := objectpath.Object(act.pkg.Types, objectpath.Path(f.Path))
if err != nil {
// Be lenient about these errors. For example, when
// analyzing io/ioutil from source, we may get a fact
// for methods on the devNull type, and objectpath
// will happily create a path for them. However, when
// we later load io/ioutil from export data, the path
// no longer resolves.
//
// If an exported type embeds the unexported type,
// then (part of) the unexported type will become part
// of the type information and our path will resolve
// again.
continue
}
factKey := objectFactKey{obj, act.factType(f.Fact)}
act.objectFacts[factKey] = f.Fact
}
return true
}
type loadingPackage struct {
pkg *packages.Package
imports map[string]*loadingPackage
isInitial bool
log logutils.Log
actions []*action // all actions with this package
loadGuard *load.Guard
dependents int32 // number of depending on it packages
analyzeOnce sync.Once
decUseMutex sync.Mutex
}
func (lp *loadingPackage) String() string {
return fmt.Sprintf("%s@%s", lp.pkg.PkgPath, lp.pkg.Name)
}
func sizeOfValueTreeBytes(v interface{}) int {
return sizeOfReflectValueTreeBytes(reflect.ValueOf(v), map[uintptr]struct{}{})
}
func sizeOfReflectValueTreeBytes(rv reflect.Value, visitedPtrs map[uintptr]struct{}) int {
switch rv.Kind() {
case reflect.Ptr:
ptrSize := int(rv.Type().Size())
if rv.IsNil() {
return ptrSize
}
ptr := rv.Pointer()
if _, ok := visitedPtrs[ptr]; ok {
return 0
}
visitedPtrs[ptr] = struct{}{}
return ptrSize + sizeOfReflectValueTreeBytes(rv.Elem(), visitedPtrs)
case reflect.Interface:
if rv.IsNil() {
return 0
}
return sizeOfReflectValueTreeBytes(rv.Elem(), visitedPtrs)
case reflect.Struct:
ret := 0
for i := 0; i < rv.NumField(); i++ {
ret += sizeOfReflectValueTreeBytes(rv.Field(i), visitedPtrs)
}
return ret
case reflect.Slice, reflect.Array, reflect.Chan:
return int(rv.Type().Size()) + rv.Cap()*int(rv.Type().Elem().Size())
case reflect.Map:
ret := 0
for _, key := range rv.MapKeys() {
mv := rv.MapIndex(key)
ret += sizeOfReflectValueTreeBytes(key, visitedPtrs)
ret += sizeOfReflectValueTreeBytes(mv, visitedPtrs)
}
return ret
case reflect.String:
return rv.Len()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
reflect.Uintptr, reflect.Bool, reflect.Float32, reflect.Float64, reflect.UnsafePointer:
return int(rv.Type().Size())
case reflect.Invalid:
return 0
default:
panic("unknown rv of type " + fmt.Sprint(rv))
}
}
func (lp *loadingPackage) decUse() {
lp.decUseMutex.Lock()
defer lp.decUseMutex.Unlock()
for _, act := range lp.actions {
pass := act.pass
if pass == nil {
continue
}
pass.Files = nil
pass.TypesInfo = nil
pass.TypesSizes = nil
pass.ResultOf = nil
pass.Pkg = nil
pass.OtherFiles = nil
pass.AllObjectFacts = nil
pass.AllPackageFacts = nil
pass.ImportObjectFact = nil
pass.ExportObjectFact = nil
pass.ImportPackageFact = nil
pass.ExportPackageFact = nil
act.pass = nil
act.deps = nil
if act.result != nil {
if isMemoryDebug {
debugf("%s: decUse: nilling act result of size %d bytes", act, sizeOfValueTreeBytes(act.result))
}
act.result = nil
}
}
lp.pkg.Syntax = nil
lp.pkg.TypesInfo = nil
lp.pkg.TypesSizes = nil
// Can't set lp.pkg.Imports to nil because of loadFromExportData.visit.
dependents := atomic.AddInt32(&lp.dependents, -1)
if dependents != 0 {
return
}
lp.pkg.Types = nil
lp.pkg = nil
for _, imp := range lp.imports {
imp.decUse()
}
lp.imports = nil
for _, act := range lp.actions {
if !lp.isInitial {
act.pkg = nil
}
act.packageFacts = nil
act.objectFacts = nil
}
lp.actions = nil
}
func (lp *loadingPackage) analyzeRecursive(loadMode LoadMode, loadSem chan struct{}) {
lp.analyzeOnce.Do(func() {
// Load the direct dependencies, in parallel.
var wg sync.WaitGroup
wg.Add(len(lp.imports))
for _, imp := range lp.imports {
go func(imp *loadingPackage) {
imp.analyzeRecursive(loadMode, loadSem)
wg.Done()
}(imp)
}
wg.Wait()
lp.analyze(loadMode, loadSem)
})
}
func (lp *loadingPackage) analyze(loadMode LoadMode, loadSem chan struct{}) {
loadSem <- struct{}{}
defer func() {
<-loadSem
}()
defer func() {
if loadMode < LoadModeWholeProgram {
// Save memory on unused more fields.
lp.decUse()
}
}()
if err := lp.loadWithFacts(loadMode); err != nil {
werr := errors.Wrapf(err, "failed to load package %s", lp.pkg.Name)
// Don't need to write error to errCh, it will be extracted and reported on another layer.
// Unblock depending actions and propagate error.
for _, act := range lp.actions {
close(act.analysisDoneCh)
act.err = werr
}
return
}
var actsWg sync.WaitGroup
actsWg.Add(len(lp.actions))
for _, act := range lp.actions {
go func(act *action) {
defer actsWg.Done()
act.waitUntilDependingAnalyzersWorked()
act.analyzeSafe()
}(act)
}
actsWg.Wait()
}
func (lp *loadingPackage) loadFromSource(loadMode LoadMode) error {
pkg := lp.pkg
// Many packages have few files, much fewer than there
// are CPU cores. Additionally, parsing each individual file is
// very fast. A naive parallel implementation of this loop won't
// be faster, and tends to be slower due to extra scheduling,
// bookkeeping and potentially false sharing of cache lines.
pkg.Syntax = make([]*ast.File, 0, len(pkg.CompiledGoFiles))
for _, file := range pkg.CompiledGoFiles {
f, err := parser.ParseFile(pkg.Fset, file, nil, parser.ParseComments)
if err != nil {
pkg.Errors = append(pkg.Errors, lp.convertError(err)...)
continue
}
pkg.Syntax = append(pkg.Syntax, f)
}
if len(pkg.Errors) != 0 {
pkg.IllTyped = true
return nil
}
if loadMode == LoadModeSyntax {
return nil
}
// Call NewPackage directly with explicit name.
// This avoids skew between golist and go/types when the files'
// package declarations are inconsistent.
// Subtle: we populate all Types fields with an empty Package
// before loading export data so that export data processing
// never has to create a types.Package for an indirect dependency,
// which would then require that such created packages be explicitly
// inserted back into the Import graph as a final step after export data loading.
pkg.Types = types.NewPackage(pkg.PkgPath, pkg.Name)
pkg.IllTyped = true
pkg.TypesInfo = &types.Info{
Types: make(map[ast.Expr]types.TypeAndValue),
Defs: make(map[*ast.Ident]types.Object),
Uses: make(map[*ast.Ident]types.Object),
Implicits: make(map[ast.Node]types.Object),
Scopes: make(map[ast.Node]*types.Scope),
Selections: make(map[*ast.SelectorExpr]*types.Selection),
}
importer := func(path string) (*types.Package, error) {
if path == unsafePkgName {
return types.Unsafe, nil
}
if path == "C" {
// go/packages doesn't tell us that cgo preprocessing
// failed. When we subsequently try to parse the package,
// we'll encounter the raw C import.
return nil, errors.New("cgo preprocessing failed")
}
imp := pkg.Imports[path]
if imp == nil {
return nil, nil
}
if len(imp.Errors) > 0 {
return nil, imp.Errors[0]
}
return imp.Types, nil
}
tc := &types.Config{
Importer: importerFunc(importer),
Error: func(err error) {
pkg.Errors = append(pkg.Errors, lp.convertError(err)...)
},
}
_ = types.NewChecker(tc, pkg.Fset, pkg.Types, pkg.TypesInfo).Files(pkg.Syntax)
// Don't handle error here: errors are adding by tc.Error function.
illTyped := len(pkg.Errors) != 0
if !illTyped {
for _, imp := range lp.imports {
if imp.pkg.IllTyped {
illTyped = true
break
}
}
}
pkg.IllTyped = illTyped
return nil
}
func (lp *loadingPackage) loadFromExportData() error {
// Because gcexportdata.Read has the potential to create or
// modify the types.Package for each node in the transitive
// closure of dependencies of lpkg, all exportdata operations
// must be sequential. (Finer-grained locking would require
// changes to the gcexportdata API.)
//
// The exportMu lock guards the Package.Pkg field and the
// types.Package it points to, for each Package in the graph.
//
// Not all accesses to Package.Pkg need to be protected by this mutex:
// graph ordering ensures that direct dependencies of source
// packages are fully loaded before the importer reads their Pkg field.
mu := lp.loadGuard.MutexForExportData()
mu.Lock()
defer mu.Unlock()
pkg := lp.pkg
// Call NewPackage directly with explicit name.
// This avoids skew between golist and go/types when the files'
// package declarations are inconsistent.
// Subtle: we populate all Types fields with an empty Package
// before loading export data so that export data processing
// never has to create a types.Package for an indirect dependency,
// which would then require that such created packages be explicitly
// inserted back into the Import graph as a final step after export data loading.
pkg.Types = types.NewPackage(pkg.PkgPath, pkg.Name)
pkg.IllTyped = true
for path, pkg := range pkg.Imports {
if pkg.Types == nil {
return fmt.Errorf("dependency %q hasn't been loaded yet", path)
}
}
if pkg.ExportFile == "" {
return fmt.Errorf("no export data for %q", pkg.ID)
}
f, err := os.Open(pkg.ExportFile)
if err != nil {
return err
}
defer f.Close()
r, err := gcexportdata.NewReader(f)
if err != nil {
return err
}
view := make(map[string]*types.Package) // view seen by gcexportdata
seen := make(map[*packages.Package]bool) // all visited packages
var visit func(pkgs map[string]*packages.Package)
visit = func(pkgs map[string]*packages.Package) {
for _, pkg := range pkgs {
if !seen[pkg] {
seen[pkg] = true
view[pkg.PkgPath] = pkg.Types
visit(pkg.Imports)
}
}
}
visit(pkg.Imports)
tpkg, err := gcexportdata.Read(r, pkg.Fset, view, pkg.PkgPath)
if err != nil {
return err
}
pkg.Types = tpkg
pkg.IllTyped = false
return nil
}
func (act *action) markDepsForAnalyzingSource() {
// Horizontal deps (analyzer.Requires) must be loaded from source and analyzed before analyzing
// this action.
for _, dep := range act.deps {
if dep.pkg == act.pkg {
// Analyze source only for horizontal dependencies, e.g. from "buildssa".
dep.needAnalyzeSource = true // can't be set in parallel
}
}
}
func (lp *loadingPackage) loadWithFacts(loadMode LoadMode) error {
pkg := lp.pkg
if pkg.PkgPath == unsafePkgName {
// Fill in the blanks to avoid surprises.
pkg.Syntax = []*ast.File{}
if loadMode >= LoadModeTypesInfo {
pkg.Types = types.Unsafe
pkg.TypesInfo = new(types.Info)
}
return nil
}
if pkg.TypesInfo != nil {
// Already loaded package, e.g. because another not go/analysis linter required types for deps.
// Try load cached facts for it.
for _, act := range lp.actions {
if !act.loadCachedFacts() {
// Cached facts loading failed: analyze later the action from source.
act.needAnalyzeSource = true
factsCacheDebugf("Loading of facts for already loaded %s failed, analyze it from source later", act)
act.markDepsForAnalyzingSource()
}
}
return nil
}
if lp.isInitial {
// No need to load cached facts: the package will be analyzed from source
// because it's the initial.
return lp.loadFromSource(loadMode)
}
return lp.loadImportedPackageWithFacts(loadMode)
}
func (lp *loadingPackage) loadImportedPackageWithFacts(loadMode LoadMode) error {
pkg := lp.pkg
// Load package from export data
if loadMode >= LoadModeTypesInfo {
if err := lp.loadFromExportData(); err != nil {
// We asked Go to give us up to date export data, yet
// we can't load it. There must be something wrong.
//
// Attempt loading from source. This should fail (because
// otherwise there would be export data); we just want to
// get the compile errors. If loading from source succeeds
// we discard the result, anyway. Otherwise we'll fail
// when trying to reload from export data later.
// Otherwise it panics because uses already existing (from exported data) types.
pkg.Types = types.NewPackage(pkg.PkgPath, pkg.Name)
if srcErr := lp.loadFromSource(loadMode); srcErr != nil {
return srcErr
}
// Make sure this package can't be imported successfully
pkg.Errors = append(pkg.Errors, packages.Error{
Pos: "-",
Msg: fmt.Sprintf("could not load export data: %s", err),
Kind: packages.ParseError,
})
return errors.Wrap(err, "could not load export data")
}
}
needLoadFromSource := false
for _, act := range lp.actions {
if act.loadCachedFacts() {
continue
}
// Cached facts loading failed: analyze later the action from source.
factsCacheDebugf("Loading of facts for %s failed, analyze it from source later", act)
act.needAnalyzeSource = true // can't be set in parallel
needLoadFromSource = true
act.markDepsForAnalyzingSource()
}
if needLoadFromSource {
// Cached facts loading failed: analyze later the action from source. To perform
// the analysis we need to load the package from source code.
// Otherwise it panics because uses already existing (from exported data) types.
if loadMode >= LoadModeTypesInfo {
pkg.Types = types.NewPackage(pkg.PkgPath, pkg.Name)
}
return lp.loadFromSource(loadMode)
}
return nil
}
func (lp *loadingPackage) convertError(err error) []packages.Error {
var errs []packages.Error
// taken from go/packages
switch err := err.(type) {
case packages.Error:
// from driver
errs = append(errs, err)
case *os.PathError:
// from parser
errs = append(errs, packages.Error{
Pos: err.Path + ":1",
Msg: err.Err.Error(),
Kind: packages.ParseError,
})
case scanner.ErrorList:
// from parser
for _, err := range err {
errs = append(errs, packages.Error{
Pos: err.Pos.String(),
Msg: err.Msg,
Kind: packages.ParseError,
})
}
case types.Error:
// from type checker
errs = append(errs, packages.Error{
Pos: err.Fset.Position(err.Pos).String(),
Msg: err.Msg,
Kind: packages.TypeError,
})
default:
// unexpected impoverished error from parser?
errs = append(errs, packages.Error{
Pos: "-",
Msg: err.Error(),
Kind: packages.UnknownError,
})
// If you see this error message, please file a bug.
lp.log.Warnf("Internal error: error %q (%T) without position", err, err)
}
return errs
}
type importerFunc func(path string) (*types.Package, error)
func (f importerFunc) Import(path string) (*types.Package, error) { return f(path) }