2018-06-30 20:08:05 +03:00

752 lines
20 KiB
Go

// Copyright (c) 2017, Daniel Martí <mvdan@mvdan.cc>
// See LICENSE for licensing information
// Package check implements the unparam linter. Note that its API is not
// stable.
package check // import "mvdan.cc/unparam/check"
import (
"bytes"
"fmt"
"go/ast"
"go/constant"
"go/parser"
"go/printer"
"go/token"
"go/types"
"io"
"os"
"path/filepath"
"regexp"
"sort"
"strings"
"golang.org/x/tools/go/callgraph"
"golang.org/x/tools/go/callgraph/cha"
"golang.org/x/tools/go/callgraph/rta"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/ssa"
"golang.org/x/tools/go/ssa/ssautil"
"github.com/kisielk/gotool"
"mvdan.cc/lint"
)
// UnusedParams returns a list of human-readable issues that point out unused
// function parameters.
func UnusedParams(tests bool, algo string, exported, debug bool, args ...string) ([]string, error) {
wd, err := os.Getwd()
if err != nil {
return nil, err
}
c := &Checker{
wd: wd,
tests: tests,
algo: algo,
exported: exported,
}
if debug {
c.debugLog = os.Stderr
}
return c.lines(args...)
}
// Checker finds unused parameterss in a program. You probably want to use
// UnusedParams instead, unless you want to use a *loader.Program and
// *ssa.Program directly.
type Checker struct {
lprog *loader.Program
prog *ssa.Program
graph *callgraph.Graph
wd string
tests bool
algo string
exported bool
debugLog io.Writer
issues []lint.Issue
cachedDeclCounts map[string]map[string]int
callByPos map[token.Pos]*ast.CallExpr
}
var (
_ lint.Checker = (*Checker)(nil)
_ lint.WithSSA = (*Checker)(nil)
errorType = types.Universe.Lookup("error").Type()
unknownConst = constant.MakeUnknown()
)
// lines runs the checker and returns the list of readable issues.
func (c *Checker) lines(args ...string) ([]string, error) {
paths := gotool.ImportPaths(args)
conf := loader.Config{
ParserMode: parser.ParseComments,
}
if _, err := conf.FromArgs(paths, c.tests); err != nil {
return nil, err
}
lprog, err := conf.Load()
if err != nil {
return nil, err
}
prog := ssautil.CreateProgram(lprog, 0)
prog.Build()
c.Program(lprog)
c.ProgramSSA(prog)
issues, err := c.Check()
if err != nil {
return nil, err
}
lines := make([]string, len(issues))
for i, issue := range issues {
fpos := prog.Fset.Position(issue.Pos()).String()
if strings.HasPrefix(fpos, c.wd) {
fpos = fpos[len(c.wd)+1:]
}
lines[i] = fmt.Sprintf("%s: %s", fpos, issue.Message())
}
return lines, nil
}
// Issue identifies a found unused parameter.
type Issue struct {
pos token.Pos
fname string
msg string
}
func (i Issue) Pos() token.Pos { return i.pos }
func (i Issue) Message() string { return i.fname + " - " + i.msg }
// Program supplies Checker with the needed *loader.Program.
func (c *Checker) Program(lprog *loader.Program) {
c.lprog = lprog
}
// ProgramSSA supplies Checker with the needed *ssa.Program.
func (c *Checker) ProgramSSA(prog *ssa.Program) {
c.prog = prog
}
// CallgraphAlgorithm supplies Checker with the call graph construction algorithm.
func (c *Checker) CallgraphAlgorithm(algo string) {
c.algo = algo
}
// CheckExportedFuncs sets whether to inspect exported functions
func (c *Checker) CheckExportedFuncs(exported bool) {
c.exported = exported
}
func (c *Checker) debug(format string, a ...interface{}) {
if c.debugLog != nil {
fmt.Fprintf(c.debugLog, format, a...)
}
}
// generatedDoc reports whether a comment text describes its file as being code
// generated.
func generatedDoc(text string) bool {
return strings.Contains(text, "Code generated") ||
strings.Contains(text, "DO NOT EDIT")
}
// eqlConsts reports whether two constant values, possibly nil, are equal.
func eqlConsts(v1, v2 constant.Value) bool {
if v1 == nil || v2 == nil {
return v1 == v2
}
return constant.Compare(v1, token.EQL, v2)
}
var stdSizes = types.SizesFor("gc", "amd64")
// Check runs the unused parameter check and returns the list of found issues,
// and any error encountered.
func (c *Checker) Check() ([]lint.Issue, error) {
c.cachedDeclCounts = make(map[string]map[string]int)
c.callByPos = make(map[token.Pos]*ast.CallExpr)
wantPkg := make(map[*types.Package]*loader.PackageInfo)
genFiles := make(map[string]bool)
for _, info := range c.lprog.InitialPackages() {
wantPkg[info.Pkg] = info
for _, f := range info.Files {
if len(f.Comments) > 0 && generatedDoc(f.Comments[0].Text()) {
fname := c.prog.Fset.Position(f.Pos()).Filename
genFiles[fname] = true
}
ast.Inspect(f, func(node ast.Node) bool {
if ce, ok := node.(*ast.CallExpr); ok {
c.callByPos[ce.Lparen] = ce
}
return true
})
}
}
switch c.algo {
case "cha":
c.graph = cha.CallGraph(c.prog)
case "rta":
mains, err := mainPackages(c.prog, wantPkg)
if err != nil {
return nil, err
}
var roots []*ssa.Function
for _, main := range mains {
roots = append(roots, main.Func("init"), main.Func("main"))
}
result := rta.Analyze(roots, true)
c.graph = result.CallGraph
default:
return nil, fmt.Errorf("unknown call graph construction algorithm: %q", c.algo)
}
c.graph.DeleteSyntheticNodes()
for fn := range ssautil.AllFunctions(c.prog) {
switch {
case fn.Pkg == nil: // builtin?
continue
case fn.Name() == "init":
continue
case len(fn.Blocks) == 0: // stub
continue
}
pkgInfo := wantPkg[fn.Pkg.Pkg]
if pkgInfo == nil { // not part of given pkgs
continue
}
if c.exported || fn.Pkg.Pkg.Name() == "main" {
// we want exported funcs, or this is a main package so
// nothing is exported
} else if strings.Contains(fn.Name(), "$") {
// anonymous function within a possibly exported func
} else if ast.IsExported(fn.Name()) {
continue // user doesn't want to change signatures here
}
fname := c.prog.Fset.Position(fn.Pos()).Filename
if genFiles[fname] {
continue // generated file
}
c.checkFunc(fn, pkgInfo)
}
sort.Slice(c.issues, func(i, j int) bool {
p1 := c.prog.Fset.Position(c.issues[i].Pos())
p2 := c.prog.Fset.Position(c.issues[j].Pos())
if p1.Filename == p2.Filename {
return p1.Offset < p2.Offset
}
return p1.Filename < p2.Filename
})
return c.issues, nil
}
// addIssue records a newly found unused parameter.
func (c *Checker) addIssue(fn *ssa.Function, pos token.Pos, format string, args ...interface{}) {
c.issues = append(c.issues, Issue{
pos: pos,
fname: fn.RelString(fn.Package().Pkg),
msg: fmt.Sprintf(format, args...),
})
}
// constantValueToString returns string representation for constant value
func constantValueToString(val constant.Value) string {
valStr := "nil" // an untyped nil is a nil constant.Value
if val != nil {
valStr = val.String()
}
return valStr
}
// checkFunc checks a single function for unused parameters.
func (c *Checker) checkFunc(fn *ssa.Function, pkgInfo *loader.PackageInfo) {
c.debug("func %s\n", fn.RelString(fn.Package().Pkg))
if dummyImpl(fn.Blocks[0]) { // panic implementation
c.debug(" skip - dummy implementation\n")
return
}
var inboundCalls []*callgraph.Edge
if node := c.graph.Nodes[fn]; node != nil {
inboundCalls = node.In
}
if requiredViaCall(fn, inboundCalls) {
c.debug(" skip - type is required via call\n")
return
}
if c.multipleImpls(pkgInfo, fn) {
c.debug(" skip - multiple implementations via build tags\n")
return
}
results := fn.Signature.Results()
sameConsts := make([]constant.Value, results.Len())
numRets := 0
allRetsExtracting := true
for _, block := range fn.Blocks {
last := block.Instrs[len(block.Instrs)-1]
ret, ok := last.(*ssa.Return)
if !ok {
continue
}
for i, val := range ret.Results {
if _, ok := val.(*ssa.Extract); !ok {
allRetsExtracting = false
}
value := unknownConst
if x, ok := val.(*ssa.Const); ok {
value = x.Value
}
if numRets == 0 {
sameConsts[i] = value
} else if !eqlConsts(sameConsts[i], value) {
sameConsts[i] = unknownConst
}
}
numRets++
}
for i, val := range sameConsts {
if val == unknownConst {
// no consistent returned constant
continue
}
if val != nil && numRets == 1 {
// just one non-nil return (too many false positives)
continue
}
valStr := constantValueToString(val)
if calledInReturn(inboundCalls) {
continue
}
res := results.At(i)
name := paramDesc(i, res)
c.addIssue(fn, res.Pos(), "result %s is always %s", name, valStr)
}
resLoop:
for i := 0; i < results.Len(); i++ {
if allRetsExtracting {
continue
}
res := results.At(i)
if res.Type() == errorType {
// "error is never unused" is less useful, and it's up
// to tools like errcheck anyway.
continue
}
count := 0
for _, edge := range inboundCalls {
val := edge.Site.Value()
if val == nil { // e.g. go statement
count++
continue
}
for _, instr := range *val.Referrers() {
extract, ok := instr.(*ssa.Extract)
if !ok {
continue resLoop // direct, real use
}
if extract.Index != i {
continue // not the same result param
}
if len(*extract.Referrers()) > 0 {
continue resLoop // real use after extraction
}
}
count++
}
if count < 2 {
continue // require ignoring at least twice
}
name := paramDesc(i, res)
c.addIssue(fn, res.Pos(), "result %s is never used", name)
}
for i, par := range fn.Params {
if i == 0 && fn.Signature.Recv() != nil { // receiver
continue
}
c.debug("%s\n", par.String())
switch par.Object().Name() {
case "", "_": // unnamed
c.debug(" skip - unnamed\n")
continue
}
if stdSizes.Sizeof(par.Type()) == 0 {
c.debug(" skip - zero size\n")
continue
}
reason := "is unused"
constStr := c.alwaysReceivedConst(inboundCalls, par, i)
if constStr != "" {
reason = fmt.Sprintf("always receives %s", constStr)
} else if anyRealUse(par, i) {
c.debug(" skip - used somewhere in the func body\n")
continue
}
c.addIssue(fn, par.Pos(), "%s %s", par.Name(), reason)
}
}
// mainPackages returns the subset of main packages within pkgSet.
func mainPackages(prog *ssa.Program, pkgSet map[*types.Package]*loader.PackageInfo) ([]*ssa.Package, error) {
mains := make([]*ssa.Package, 0, len(pkgSet))
for tpkg := range pkgSet {
pkg := prog.Package(tpkg)
if tpkg.Name() == "main" && pkg.Func("main") != nil {
mains = append(mains, pkg)
}
}
if len(mains) == 0 {
return nil, fmt.Errorf("no main packages")
}
return mains, nil
}
// calledInReturn reports whether any of a function's inbound calls happened
// directly as a return statement. That is, if function "foo" was used via
// "return foo()". This means that the result parameters of the function cannot
// be changed without breaking other code.
func calledInReturn(in []*callgraph.Edge) bool {
for _, edge := range in {
val := edge.Site.Value()
if val == nil { // e.g. go statement
continue
}
refs := *val.Referrers()
if len(refs) == 0 { // no use of return values
continue
}
allReturnExtracts := true
for _, instr := range refs {
switch x := instr.(type) {
case *ssa.Return:
return true
case *ssa.Extract:
refs := *x.Referrers()
if len(refs) != 1 {
allReturnExtracts = false
break
}
if _, ok := refs[0].(*ssa.Return); !ok {
allReturnExtracts = false
}
}
}
if allReturnExtracts {
return true
}
}
return false
}
// nodeStr stringifies a syntax tree node. It is only meant for simple nodes,
// such as short value expressions.
func nodeStr(node ast.Node) string {
var buf bytes.Buffer
fset := token.NewFileSet()
if err := printer.Fprint(&buf, fset, node); err != nil {
panic(err)
}
return buf.String()
}
// alwaysReceivedConst checks if a function parameter always receives the same
// constant value, given a list of inbound calls. If it does, a description of
// the value is returned. If not, an empty string is returned.
//
// This function is used to recommend that the parameter be replaced by a direct
// use of the constant. To avoid false positives, the function will return false
// if the number of inbound calls is too low.
func (c *Checker) alwaysReceivedConst(in []*callgraph.Edge, par *ssa.Parameter, pos int) string {
if len(in) < 4 {
// We can't possibly receive the same constant value enough
// times, hence a potential false positive.
return ""
}
if ast.IsExported(par.Parent().Name()) {
// we might not have all call sites for an exported func
return ""
}
seen := unknownConst
origPos := pos
if par.Parent().Signature.Recv() != nil {
// go/ast's CallExpr.Args does not include the receiver, but
// go/ssa's equivalent does.
origPos--
}
seenOrig := ""
for _, edge := range in {
call := edge.Site.Common()
cnst, ok := call.Args[pos].(*ssa.Const)
if !ok {
return "" // not a constant
}
origArg := ""
origCall := c.callByPos[call.Pos()]
if origPos >= len(origCall.Args) {
// variadic parameter that wasn't given
} else {
origArg = nodeStr(origCall.Args[origPos])
}
if seen == unknownConst {
seen = cnst.Value // first constant
seenOrig = origArg
} else if !eqlConsts(seen, cnst.Value) {
return "" // different constants
} else if origArg != seenOrig {
seenOrig = ""
}
}
seenStr := constantValueToString(seen)
if seenOrig != "" && seenOrig != seenStr {
return fmt.Sprintf("%s (%v)", seenOrig, seen)
}
return seenStr
}
// anyRealUse reports whether a parameter has any relevant use within its
// function body. Certain uses are ignored, such as recursive calls where the
// parameter is re-used as itself.
func anyRealUse(par *ssa.Parameter, pos int) bool {
refLoop:
for _, ref := range *par.Referrers() {
switch x := ref.(type) {
case *ssa.Call:
if x.Call.Value != par.Parent() {
return true // not a recursive call
}
for i, arg := range x.Call.Args {
if arg != par {
continue
}
if i == pos {
// reused directly in a recursive call
continue refLoop
}
}
return true
case *ssa.Store:
if insertedStore(x) {
continue // inserted by go/ssa, not from the code
}
return true
default:
return true
}
}
return false
}
// insertedStore reports whether a SSA instruction was inserted by the SSA
// building algorithm. That is, the store was not directly translated from an
// original Go statement.
func insertedStore(instr ssa.Instruction) bool {
if instr.Pos() != token.NoPos {
return false
}
store, ok := instr.(*ssa.Store)
if !ok {
return false
}
alloc, ok := store.Addr.(*ssa.Alloc)
// we want exactly one use of this alloc value for it to be
// inserted by ssa and dummy - the alloc instruction itself.
return ok && len(*alloc.Referrers()) == 1
}
// rxHarmlessCall matches all the function expression strings which are allowed
// in a dummy implementation.
var rxHarmlessCall = regexp.MustCompile(`(?i)\b(log(ger)?|errors)\b|\bf?print|errorf?$`)
// dummyImpl reports whether a block is a dummy implementation. This is
// true if the block will almost immediately panic, throw or return
// constants only.
func dummyImpl(blk *ssa.BasicBlock) bool {
var ops [8]*ssa.Value
for _, instr := range blk.Instrs {
if insertedStore(instr) {
continue // inserted by go/ssa, not from the code
}
for _, val := range instr.Operands(ops[:0]) {
switch x := (*val).(type) {
case nil, *ssa.Const, *ssa.ChangeType, *ssa.Alloc,
*ssa.MakeInterface, *ssa.MakeMap,
*ssa.Function, *ssa.Global,
*ssa.IndexAddr, *ssa.Slice,
*ssa.UnOp, *ssa.Parameter:
case *ssa.Call:
if rxHarmlessCall.MatchString(x.Call.Value.String()) {
continue
}
default:
return false
}
}
switch x := instr.(type) {
case *ssa.Alloc, *ssa.Store, *ssa.UnOp, *ssa.BinOp,
*ssa.MakeInterface, *ssa.MakeMap, *ssa.Extract,
*ssa.IndexAddr, *ssa.FieldAddr, *ssa.Slice,
*ssa.Lookup, *ssa.ChangeType, *ssa.TypeAssert,
*ssa.Convert, *ssa.ChangeInterface:
// non-trivial expressions in panic/log/print calls
case *ssa.Return, *ssa.Panic:
return true
case *ssa.Call:
if rxHarmlessCall.MatchString(x.Call.Value.String()) {
continue
}
return x.Call.Value.Name() == "throw" // runtime's panic
default:
return false
}
}
return false
}
// declCounts reports how many times a package's functions are declared. This is
// used, for example, to find if a function has many implementations.
//
// Since this function parses all of the package's Go source files on disk, its
// results are cached.
func (c *Checker) declCounts(pkgDir string, pkgName string) map[string]int {
key := pkgDir + ":" + pkgName
if m, ok := c.cachedDeclCounts[key]; ok {
return m
}
fset := token.NewFileSet()
pkgs, err := parser.ParseDir(fset, pkgDir, nil, 0)
if err != nil {
// Don't panic or error here. In some part of the go/* libraries
// stack, we sometimes end up with a package directory that is
// wrong. That's not our fault, and we can't simply break the
// tool until we fix the underlying issue.
println(err.Error())
c.cachedDeclCounts[pkgDir] = nil
return nil
}
pkg := pkgs[pkgName]
count := make(map[string]int)
for _, file := range pkg.Files {
for _, decl := range file.Decls {
fd, ok := decl.(*ast.FuncDecl)
if !ok {
continue
}
name := recvPrefix(fd.Recv) + fd.Name.Name
count[name]++
}
}
c.cachedDeclCounts[key] = count
return count
}
// recvPrefix returns the string prefix for a receiver field list. Star
// expressions are ignored, so as to conservatively assume that pointer and
// non-pointer receivers may still implement the same function.
//
// For example, for "function (*Foo) Bar()", recvPrefix will return "Foo.".
func recvPrefix(recv *ast.FieldList) string {
if recv == nil {
return ""
}
expr := recv.List[0].Type
for {
star, ok := expr.(*ast.StarExpr)
if !ok {
break
}
expr = star.X
}
id := expr.(*ast.Ident)
return id.Name + "."
}
// multipleImpls reports whether a function has multiple implementations in the
// source code. For example, if there are different function bodies depending on
// the operating system or architecture. That tends to mean that an unused
// parameter in one implementation may not be unused in another.
func (c *Checker) multipleImpls(info *loader.PackageInfo, fn *ssa.Function) bool {
if fn.Parent() != nil { // nested func
return false
}
path := c.prog.Fset.Position(fn.Pos()).Filename
count := c.declCounts(filepath.Dir(path), info.Pkg.Name())
name := fn.Name()
if fn.Signature.Recv() != nil {
tp := fn.Params[0].Type()
for {
ptr, ok := tp.(*types.Pointer)
if !ok {
break
}
tp = ptr.Elem()
}
named := tp.(*types.Named)
name = named.Obj().Name() + "." + name
}
return count[name] > 1
}
// receivesExtractedArgs reports whether a function call got all of its
// arguments via another function call. That is, if a call to function "foo" was
// of the form "foo(bar())".
func receivesExtractedArgs(sign *types.Signature, call *ssa.Call) bool {
if call == nil {
return false
}
if sign.Params().Len() < 2 {
return false // extracting into one param is ok
}
args := call.Operands(nil)
for i, arg := range args {
if i == 0 {
continue // *ssa.Function, func itself
}
if i == 1 && sign.Recv() != nil {
continue // method receiver
}
if _, ok := (*arg).(*ssa.Extract); !ok {
return false
}
}
return true
}
// paramDesc returns a string describing a parameter variable. If the parameter
// had no name, the function will fall back to describing the parameter by its
// position within the parameter list and its type.
func paramDesc(i int, v *types.Var) string {
name := v.Name()
if name != "" && name != "_" {
return name
}
return fmt.Sprintf("%d (%s)", i, v.Type().String())
}
// requiredViaCall reports whether a function has any inbound call that strongly
// depends on the function's signature. For example, if the function is accessed
// via a field, or if it gets its arguments from another function call. In these
// cases, changing the function signature would mean a larger refactor.
func requiredViaCall(fn *ssa.Function, calls []*callgraph.Edge) bool {
for _, edge := range calls {
call := edge.Site.Value()
if receivesExtractedArgs(fn.Signature, call) {
// called via fn(x())
return true
}
if _, ok := edge.Site.Common().Value.(*ssa.Function); !ok {
// called via a parameter or field, type is set in
// stone.
return true
}
}
return false
}