full diff: https://github.com/dominikh/go-tools/compare/2019.2.3...2020.1.3 Also updates tests to accomodate updated rules: --- FAIL: TestSourcesFromTestdataWithIssuesDir/staticcheck.go (0.43s) linters_test.go:137: [run --disable-all --print-issued-lines=false --print-linter-name=false --out-format=line-number --max-same-issues=10 -Estaticcheck --no-config testdata/staticcheck.go] linters_test.go:33: Error Trace: linters_test.go:33 linters_test.go:138 linters_test.go:53 Error: Received unexpected error: staticcheck.go:11: no match for `self-assignment of x to x` vs ["SA4006: this value of `x` is never used"] in: staticcheck.go:11:2: SA4006: this value of `x` is never used unmatched errors staticcheck.go:11:2: SA4006: this value of `x` is never used Test: TestSourcesFromTestdataWithIssuesDir/staticcheck.go Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
		
			
				
	
	
		
			462 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			462 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2013 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package ir
 | 
						|
 | 
						|
// This file defines algorithms related to dominance.
 | 
						|
 | 
						|
// Dominator tree construction ----------------------------------------
 | 
						|
//
 | 
						|
// We use the algorithm described in Lengauer & Tarjan. 1979.  A fast
 | 
						|
// algorithm for finding dominators in a flowgraph.
 | 
						|
// http://doi.acm.org/10.1145/357062.357071
 | 
						|
//
 | 
						|
// We also apply the optimizations to SLT described in Georgiadis et
 | 
						|
// al, Finding Dominators in Practice, JGAA 2006,
 | 
						|
// http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf
 | 
						|
// to avoid the need for buckets of size > 1.
 | 
						|
 | 
						|
import (
 | 
						|
	"bytes"
 | 
						|
	"fmt"
 | 
						|
	"io"
 | 
						|
	"math/big"
 | 
						|
	"os"
 | 
						|
	"sort"
 | 
						|
)
 | 
						|
 | 
						|
// Idom returns the block that immediately dominates b:
 | 
						|
// its parent in the dominator tree, if any.
 | 
						|
// The entry node (b.Index==0) does not have a parent.
 | 
						|
//
 | 
						|
func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom }
 | 
						|
 | 
						|
// Dominees returns the list of blocks that b immediately dominates:
 | 
						|
// its children in the dominator tree.
 | 
						|
//
 | 
						|
func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children }
 | 
						|
 | 
						|
// Dominates reports whether b dominates c.
 | 
						|
func (b *BasicBlock) Dominates(c *BasicBlock) bool {
 | 
						|
	return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post
 | 
						|
}
 | 
						|
 | 
						|
type byDomPreorder []*BasicBlock
 | 
						|
 | 
						|
func (a byDomPreorder) Len() int           { return len(a) }
 | 
						|
func (a byDomPreorder) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
 | 
						|
func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre }
 | 
						|
 | 
						|
// DomPreorder returns a new slice containing the blocks of f in
 | 
						|
// dominator tree preorder.
 | 
						|
//
 | 
						|
func (f *Function) DomPreorder() []*BasicBlock {
 | 
						|
	n := len(f.Blocks)
 | 
						|
	order := make(byDomPreorder, n)
 | 
						|
	copy(order, f.Blocks)
 | 
						|
	sort.Sort(order)
 | 
						|
	return order
 | 
						|
}
 | 
						|
 | 
						|
// domInfo contains a BasicBlock's dominance information.
 | 
						|
type domInfo struct {
 | 
						|
	idom      *BasicBlock   // immediate dominator (parent in domtree)
 | 
						|
	children  []*BasicBlock // nodes immediately dominated by this one
 | 
						|
	pre, post int32         // pre- and post-order numbering within domtree
 | 
						|
}
 | 
						|
 | 
						|
// buildDomTree computes the dominator tree of f using the LT algorithm.
 | 
						|
// Precondition: all blocks are reachable (e.g. optimizeBlocks has been run).
 | 
						|
//
 | 
						|
func buildDomTree(fn *Function) {
 | 
						|
	// The step numbers refer to the original LT paper; the
 | 
						|
	// reordering is due to Georgiadis.
 | 
						|
 | 
						|
	// Clear any previous domInfo.
 | 
						|
	for _, b := range fn.Blocks {
 | 
						|
		b.dom = domInfo{}
 | 
						|
	}
 | 
						|
 | 
						|
	idoms := make([]*BasicBlock, len(fn.Blocks))
 | 
						|
 | 
						|
	order := make([]*BasicBlock, 0, len(fn.Blocks))
 | 
						|
	seen := fn.blockset(0)
 | 
						|
	var dfs func(b *BasicBlock)
 | 
						|
	dfs = func(b *BasicBlock) {
 | 
						|
		if !seen.Add(b) {
 | 
						|
			return
 | 
						|
		}
 | 
						|
		for _, succ := range b.Succs {
 | 
						|
			dfs(succ)
 | 
						|
		}
 | 
						|
		if fn.fakeExits.Has(b) {
 | 
						|
			dfs(fn.Exit)
 | 
						|
		}
 | 
						|
		order = append(order, b)
 | 
						|
		b.post = len(order) - 1
 | 
						|
	}
 | 
						|
	dfs(fn.Blocks[0])
 | 
						|
 | 
						|
	for i := 0; i < len(order)/2; i++ {
 | 
						|
		o := len(order) - i - 1
 | 
						|
		order[i], order[o] = order[o], order[i]
 | 
						|
	}
 | 
						|
 | 
						|
	idoms[fn.Blocks[0].Index] = fn.Blocks[0]
 | 
						|
	changed := true
 | 
						|
	for changed {
 | 
						|
		changed = false
 | 
						|
		// iterate over all nodes in reverse postorder, except for the
 | 
						|
		// entry node
 | 
						|
		for _, b := range order[1:] {
 | 
						|
			var newIdom *BasicBlock
 | 
						|
			do := func(p *BasicBlock) {
 | 
						|
				if idoms[p.Index] == nil {
 | 
						|
					return
 | 
						|
				}
 | 
						|
				if newIdom == nil {
 | 
						|
					newIdom = p
 | 
						|
				} else {
 | 
						|
					finger1 := p
 | 
						|
					finger2 := newIdom
 | 
						|
					for finger1 != finger2 {
 | 
						|
						for finger1.post < finger2.post {
 | 
						|
							finger1 = idoms[finger1.Index]
 | 
						|
						}
 | 
						|
						for finger2.post < finger1.post {
 | 
						|
							finger2 = idoms[finger2.Index]
 | 
						|
						}
 | 
						|
					}
 | 
						|
					newIdom = finger1
 | 
						|
				}
 | 
						|
			}
 | 
						|
			for _, p := range b.Preds {
 | 
						|
				do(p)
 | 
						|
			}
 | 
						|
			if b == fn.Exit {
 | 
						|
				for _, p := range fn.Blocks {
 | 
						|
					if fn.fakeExits.Has(p) {
 | 
						|
						do(p)
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if idoms[b.Index] != newIdom {
 | 
						|
				idoms[b.Index] = newIdom
 | 
						|
				changed = true
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for i, b := range idoms {
 | 
						|
		fn.Blocks[i].dom.idom = b
 | 
						|
		if b == nil {
 | 
						|
			// malformed CFG
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if i == b.Index {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		b.dom.children = append(b.dom.children, fn.Blocks[i])
 | 
						|
	}
 | 
						|
 | 
						|
	numberDomTree(fn.Blocks[0], 0, 0)
 | 
						|
 | 
						|
	// printDomTreeDot(os.Stderr, fn) // debugging
 | 
						|
	// printDomTreeText(os.Stderr, root, 0) // debugging
 | 
						|
 | 
						|
	if fn.Prog.mode&SanityCheckFunctions != 0 {
 | 
						|
		sanityCheckDomTree(fn)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// buildPostDomTree is like buildDomTree, but builds the post-dominator tree instead.
 | 
						|
func buildPostDomTree(fn *Function) {
 | 
						|
	// The step numbers refer to the original LT paper; the
 | 
						|
	// reordering is due to Georgiadis.
 | 
						|
 | 
						|
	// Clear any previous domInfo.
 | 
						|
	for _, b := range fn.Blocks {
 | 
						|
		b.pdom = domInfo{}
 | 
						|
	}
 | 
						|
 | 
						|
	idoms := make([]*BasicBlock, len(fn.Blocks))
 | 
						|
 | 
						|
	order := make([]*BasicBlock, 0, len(fn.Blocks))
 | 
						|
	seen := fn.blockset(0)
 | 
						|
	var dfs func(b *BasicBlock)
 | 
						|
	dfs = func(b *BasicBlock) {
 | 
						|
		if !seen.Add(b) {
 | 
						|
			return
 | 
						|
		}
 | 
						|
		for _, pred := range b.Preds {
 | 
						|
			dfs(pred)
 | 
						|
		}
 | 
						|
		if b == fn.Exit {
 | 
						|
			for _, p := range fn.Blocks {
 | 
						|
				if fn.fakeExits.Has(p) {
 | 
						|
					dfs(p)
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		order = append(order, b)
 | 
						|
		b.post = len(order) - 1
 | 
						|
	}
 | 
						|
	dfs(fn.Exit)
 | 
						|
 | 
						|
	for i := 0; i < len(order)/2; i++ {
 | 
						|
		o := len(order) - i - 1
 | 
						|
		order[i], order[o] = order[o], order[i]
 | 
						|
	}
 | 
						|
 | 
						|
	idoms[fn.Exit.Index] = fn.Exit
 | 
						|
	changed := true
 | 
						|
	for changed {
 | 
						|
		changed = false
 | 
						|
		// iterate over all nodes in reverse postorder, except for the
 | 
						|
		// exit node
 | 
						|
		for _, b := range order[1:] {
 | 
						|
			var newIdom *BasicBlock
 | 
						|
			do := func(p *BasicBlock) {
 | 
						|
				if idoms[p.Index] == nil {
 | 
						|
					return
 | 
						|
				}
 | 
						|
				if newIdom == nil {
 | 
						|
					newIdom = p
 | 
						|
				} else {
 | 
						|
					finger1 := p
 | 
						|
					finger2 := newIdom
 | 
						|
					for finger1 != finger2 {
 | 
						|
						for finger1.post < finger2.post {
 | 
						|
							finger1 = idoms[finger1.Index]
 | 
						|
						}
 | 
						|
						for finger2.post < finger1.post {
 | 
						|
							finger2 = idoms[finger2.Index]
 | 
						|
						}
 | 
						|
					}
 | 
						|
					newIdom = finger1
 | 
						|
				}
 | 
						|
			}
 | 
						|
			for _, p := range b.Succs {
 | 
						|
				do(p)
 | 
						|
			}
 | 
						|
			if fn.fakeExits.Has(b) {
 | 
						|
				do(fn.Exit)
 | 
						|
			}
 | 
						|
 | 
						|
			if idoms[b.Index] != newIdom {
 | 
						|
				idoms[b.Index] = newIdom
 | 
						|
				changed = true
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for i, b := range idoms {
 | 
						|
		fn.Blocks[i].pdom.idom = b
 | 
						|
		if b == nil {
 | 
						|
			// malformed CFG
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if i == b.Index {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		b.pdom.children = append(b.pdom.children, fn.Blocks[i])
 | 
						|
	}
 | 
						|
 | 
						|
	numberPostDomTree(fn.Exit, 0, 0)
 | 
						|
 | 
						|
	// printPostDomTreeDot(os.Stderr, fn) // debugging
 | 
						|
	// printPostDomTreeText(os.Stderr, fn.Exit, 0) // debugging
 | 
						|
 | 
						|
	if fn.Prog.mode&SanityCheckFunctions != 0 { // XXX
 | 
						|
		sanityCheckDomTree(fn) // XXX
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// numberDomTree sets the pre- and post-order numbers of a depth-first
 | 
						|
// traversal of the dominator tree rooted at v.  These are used to
 | 
						|
// answer dominance queries in constant time.
 | 
						|
//
 | 
						|
func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
 | 
						|
	v.dom.pre = pre
 | 
						|
	pre++
 | 
						|
	for _, child := range v.dom.children {
 | 
						|
		pre, post = numberDomTree(child, pre, post)
 | 
						|
	}
 | 
						|
	v.dom.post = post
 | 
						|
	post++
 | 
						|
	return pre, post
 | 
						|
}
 | 
						|
 | 
						|
// numberPostDomTree sets the pre- and post-order numbers of a depth-first
 | 
						|
// traversal of the post-dominator tree rooted at v.  These are used to
 | 
						|
// answer post-dominance queries in constant time.
 | 
						|
//
 | 
						|
func numberPostDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
 | 
						|
	v.pdom.pre = pre
 | 
						|
	pre++
 | 
						|
	for _, child := range v.pdom.children {
 | 
						|
		pre, post = numberPostDomTree(child, pre, post)
 | 
						|
	}
 | 
						|
	v.pdom.post = post
 | 
						|
	post++
 | 
						|
	return pre, post
 | 
						|
}
 | 
						|
 | 
						|
// Testing utilities ----------------------------------------
 | 
						|
 | 
						|
// sanityCheckDomTree checks the correctness of the dominator tree
 | 
						|
// computed by the LT algorithm by comparing against the dominance
 | 
						|
// relation computed by a naive Kildall-style forward dataflow
 | 
						|
// analysis (Algorithm 10.16 from the "Dragon" book).
 | 
						|
//
 | 
						|
func sanityCheckDomTree(f *Function) {
 | 
						|
	n := len(f.Blocks)
 | 
						|
 | 
						|
	// D[i] is the set of blocks that dominate f.Blocks[i],
 | 
						|
	// represented as a bit-set of block indices.
 | 
						|
	D := make([]big.Int, n)
 | 
						|
 | 
						|
	one := big.NewInt(1)
 | 
						|
 | 
						|
	// all is the set of all blocks; constant.
 | 
						|
	var all big.Int
 | 
						|
	all.Set(one).Lsh(&all, uint(n)).Sub(&all, one)
 | 
						|
 | 
						|
	// Initialization.
 | 
						|
	for i := range f.Blocks {
 | 
						|
		if i == 0 {
 | 
						|
			// A root is dominated only by itself.
 | 
						|
			D[i].SetBit(&D[0], 0, 1)
 | 
						|
		} else {
 | 
						|
			// All other blocks are (initially) dominated
 | 
						|
			// by every block.
 | 
						|
			D[i].Set(&all)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Iteration until fixed point.
 | 
						|
	for changed := true; changed; {
 | 
						|
		changed = false
 | 
						|
		for i, b := range f.Blocks {
 | 
						|
			if i == 0 {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			// Compute intersection across predecessors.
 | 
						|
			var x big.Int
 | 
						|
			x.Set(&all)
 | 
						|
			for _, pred := range b.Preds {
 | 
						|
				x.And(&x, &D[pred.Index])
 | 
						|
			}
 | 
						|
			if b == f.Exit {
 | 
						|
				for _, p := range f.Blocks {
 | 
						|
					if f.fakeExits.Has(p) {
 | 
						|
						x.And(&x, &D[p.Index])
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			x.SetBit(&x, i, 1) // a block always dominates itself.
 | 
						|
			if D[i].Cmp(&x) != 0 {
 | 
						|
				D[i].Set(&x)
 | 
						|
				changed = true
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Check the entire relation.  O(n^2).
 | 
						|
	ok := true
 | 
						|
	for i := 0; i < n; i++ {
 | 
						|
		for j := 0; j < n; j++ {
 | 
						|
			b, c := f.Blocks[i], f.Blocks[j]
 | 
						|
			actual := b.Dominates(c)
 | 
						|
			expected := D[j].Bit(i) == 1
 | 
						|
			if actual != expected {
 | 
						|
				fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected)
 | 
						|
				ok = false
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	preorder := f.DomPreorder()
 | 
						|
	for _, b := range f.Blocks {
 | 
						|
		if got := preorder[b.dom.pre]; got != b {
 | 
						|
			fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b)
 | 
						|
			ok = false
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if !ok {
 | 
						|
		panic("sanityCheckDomTree failed for " + f.String())
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
// Printing functions ----------------------------------------
 | 
						|
 | 
						|
// printDomTree prints the dominator tree as text, using indentation.
 | 
						|
//lint:ignore U1000 used during debugging
 | 
						|
func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) {
 | 
						|
	fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
 | 
						|
	for _, child := range v.dom.children {
 | 
						|
		printDomTreeText(buf, child, indent+1)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// printDomTreeDot prints the dominator tree of f in AT&T GraphViz
 | 
						|
// (.dot) format.
 | 
						|
//lint:ignore U1000 used during debugging
 | 
						|
func printDomTreeDot(buf io.Writer, f *Function) {
 | 
						|
	fmt.Fprintln(buf, "//", f)
 | 
						|
	fmt.Fprintln(buf, "digraph domtree {")
 | 
						|
	for i, b := range f.Blocks {
 | 
						|
		v := b.dom
 | 
						|
		fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
 | 
						|
		// TODO(adonovan): improve appearance of edges
 | 
						|
		// belonging to both dominator tree and CFG.
 | 
						|
 | 
						|
		// Dominator tree edge.
 | 
						|
		if i != 0 {
 | 
						|
			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre)
 | 
						|
		}
 | 
						|
		// CFG edges.
 | 
						|
		for _, pred := range b.Preds {
 | 
						|
			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	fmt.Fprintln(buf, "}")
 | 
						|
}
 | 
						|
 | 
						|
// printDomTree prints the dominator tree as text, using indentation.
 | 
						|
//lint:ignore U1000 used during debugging
 | 
						|
func printPostDomTreeText(buf io.Writer, v *BasicBlock, indent int) {
 | 
						|
	fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
 | 
						|
	for _, child := range v.pdom.children {
 | 
						|
		printPostDomTreeText(buf, child, indent+1)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// printDomTreeDot prints the dominator tree of f in AT&T GraphViz
 | 
						|
// (.dot) format.
 | 
						|
//lint:ignore U1000 used during debugging
 | 
						|
func printPostDomTreeDot(buf io.Writer, f *Function) {
 | 
						|
	fmt.Fprintln(buf, "//", f)
 | 
						|
	fmt.Fprintln(buf, "digraph pdomtree {")
 | 
						|
	for _, b := range f.Blocks {
 | 
						|
		v := b.pdom
 | 
						|
		fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
 | 
						|
		// TODO(adonovan): improve appearance of edges
 | 
						|
		// belonging to both dominator tree and CFG.
 | 
						|
 | 
						|
		// Dominator tree edge.
 | 
						|
		if b != f.Exit {
 | 
						|
			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.pdom.pre, v.pre)
 | 
						|
		}
 | 
						|
		// CFG edges.
 | 
						|
		for _, pred := range b.Preds {
 | 
						|
			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.pdom.pre, v.pre)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	fmt.Fprintln(buf, "}")
 | 
						|
}
 |