// checker is a partial copy of https://github.com/golang/tools/blob/master/go/analysis/internal/checker // Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package checker defines the implementation of the checker commands. // The same code drives the multi-analysis driver, the single-analysis // driver that is conventionally provided for convenience along with // each analysis package, and the test driver. package checker import ( "bytes" "encoding/gob" "fmt" "go/token" "go/types" "log" "os" "reflect" "runtime" "runtime/pprof" "runtime/trace" "sort" "strings" "sync" "time" "github.com/pkg/errors" "golang.org/x/tools/go/analysis" "golang.org/x/tools/go/packages" ) var ( // Debug is a set of single-letter flags: // // f show [f]acts as they are created // p disable [p]arallel execution of analyzers // s do additional [s]anity checks on fact types and serialization // t show [t]iming info (NB: use 'p' flag to avoid GC/scheduler noise) // v show [v]erbose logging // Debug = os.Getenv("GL_DEBUG_GO_ANALYSIS") // Log files for optional performance tracing. CPUProfile, MemProfile, Trace string ) type Diagnostic struct { analysis.Diagnostic AnalyzerName string Position token.Position } // Run loads the packages specified by args using go/packages, // then applies the specified analyzers to them. // Analysis flags must already have been set. // It provides most of the logic for the main functions of both the // singlechecker and the multi-analysis commands. // It returns the appropriate exit code. //nolint:gocyclo func Run(analyzers []*analysis.Analyzer, initialPackages []*packages.Package) ([]Diagnostic, []error) { if CPUProfile != "" { f, err := os.Create(CPUProfile) if err != nil { log.Fatal(err) } if err := pprof.StartCPUProfile(f); err != nil { log.Fatal(err) } // NB: profile won't be written in case of error. defer pprof.StopCPUProfile() } if Trace != "" { f, err := os.Create(Trace) if err != nil { log.Fatal(err) } if err := trace.Start(f); err != nil { log.Fatal(err) } // NB: trace log won't be written in case of error. defer func() { trace.Stop() log.Printf("To view the trace, run:\n$ go tool trace view %s", Trace) }() } if MemProfile != "" { f, err := os.Create(MemProfile) if err != nil { log.Fatal(err) } // NB: memprofile won't be written in case of error. defer func() { runtime.GC() // get up-to-date statistics if err := pprof.WriteHeapProfile(f); err != nil { log.Fatalf("Writing memory profile: %v", err) } f.Close() }() } // Load the packages. if dbg('v') { log.SetPrefix("") log.SetFlags(log.Lmicroseconds) // display timing log.Printf("load %d packages", len(initialPackages)) } // Print the results. roots := analyze(initialPackages, analyzers) return extractDiagnostics(roots) } func analyze(pkgs []*packages.Package, analyzers []*analysis.Analyzer) []*action { // Construct the action graph. if dbg('v') { log.Printf("building graph of analysis passes") } // Each graph node (action) is one unit of analysis. // Edges express package-to-package (vertical) dependencies, // and analysis-to-analysis (horizontal) dependencies. type key struct { *analysis.Analyzer *packages.Package } actions := make(map[key]*action) var mkAction func(a *analysis.Analyzer, pkg *packages.Package) *action mkAction = func(a *analysis.Analyzer, pkg *packages.Package) *action { k := key{a, pkg} act, ok := actions[k] if !ok { act = &action{a: a, pkg: pkg} // Add a dependency on each required analyzers. for _, req := range a.Requires { act.deps = append(act.deps, mkAction(req, pkg)) } // An analysis that consumes/produces facts // must run on the package's dependencies too. if len(a.FactTypes) > 0 { paths := make([]string, 0, len(pkg.Imports)) for path := range pkg.Imports { paths = append(paths, path) } sort.Strings(paths) // for determinism for _, path := range paths { dep := mkAction(a, pkg.Imports[path]) act.deps = append(act.deps, dep) } } actions[k] = act } return act } // Build nodes for initial packages. var roots []*action for _, a := range analyzers { for _, pkg := range pkgs { root := mkAction(a, pkg) root.isroot = true roots = append(roots, root) } } // Execute the graph in parallel. execAll(roots) return roots } func extractDiagnostics(roots []*action) (retDiags []Diagnostic, retErrors []error) { extracted := make(map[*action]bool) var extract func(*action) var visitAll func(actions []*action) visitAll = func(actions []*action) { for _, act := range actions { if !extracted[act] { extracted[act] = true visitAll(act.deps) extract(act) } } } // De-duplicate diagnostics by position (not token.Pos) to // avoid double-reporting in source files that belong to // multiple packages, such as foo and foo.test. type key struct { token.Position *analysis.Analyzer message string } seen := make(map[key]bool) extract = func(act *action) { if act.err != nil { retErrors = append(retErrors, errors.Wrap(act.err, act.a.Name)) return } if act.isroot { for _, diag := range act.diagnostics { // We don't display a.Name/f.Category // as most users don't care. posn := act.pkg.Fset.Position(diag.Pos) k := key{posn, act.a, diag.Message} if seen[k] { continue // duplicate } seen[k] = true retDiags = append(retDiags, Diagnostic{Diagnostic: diag, AnalyzerName: act.a.Name, Position: posn}) } } } visitAll(roots) return } // NeedFacts reports whether any analysis required by the specified set // needs facts. If so, we must load the entire program from source. func NeedFacts(analyzers []*analysis.Analyzer) bool { seen := make(map[*analysis.Analyzer]bool) var q []*analysis.Analyzer // for BFS q = append(q, analyzers...) for len(q) > 0 { a := q[0] q = q[1:] if !seen[a] { seen[a] = true if len(a.FactTypes) > 0 { return true } q = append(q, a.Requires...) } } return false } // An action represents one unit of analysis work: the application of // one analysis to one package. Actions form a DAG, both within a // package (as different analyzers are applied, either in sequence or // parallel), and across packages (as dependencies are analyzed). type action struct { once sync.Once a *analysis.Analyzer pkg *packages.Package pass *analysis.Pass isroot bool deps []*action objectFacts map[objectFactKey]analysis.Fact packageFacts map[packageFactKey]analysis.Fact inputs map[*analysis.Analyzer]interface{} result interface{} diagnostics []analysis.Diagnostic err error duration time.Duration } type objectFactKey struct { obj types.Object typ reflect.Type } type packageFactKey struct { pkg *types.Package typ reflect.Type } func (act *action) String() string { return fmt.Sprintf("%s@%s", act.a, act.pkg) } func execAll(actions []*action) { sequential := dbg('p') var wg sync.WaitGroup for _, act := range actions { wg.Add(1) work := func(act *action) { act.exec() wg.Done() } if sequential { work(act) } else { go work(act) } } wg.Wait() } func (act *action) exec() { act.once.Do(act.execOnce) } func (act *action) execOnce() { // Analyze dependencies. execAll(act.deps) // TODO(adonovan): uncomment this during profiling. // It won't build pre-go1.11 but conditional compilation // using build tags isn't warranted. // // ctx, task := trace.NewTask(context.Background(), "exec") // trace.Log(ctx, "pass", act.String()) // defer task.End() // Record time spent in this node but not its dependencies. // In parallel mode, due to GC/scheduler contention, the // time is 5x higher than in sequential mode, even with a // semaphore limiting the number of threads here. // So use -debug=tp. if dbg('t') { t0 := time.Now() defer func() { act.duration = time.Since(t0) }() } // Report an error if any dependency failed. var failed []string for _, dep := range act.deps { if dep.err != nil { failed = append(failed, dep.String()) } } if failed != nil { sort.Strings(failed) act.err = fmt.Errorf("failed prerequisites: %s", strings.Join(failed, ", ")) return } // Plumb the output values of the dependencies // into the inputs of this action. Also facts. inputs := make(map[*analysis.Analyzer]interface{}) act.objectFacts = make(map[objectFactKey]analysis.Fact) act.packageFacts = make(map[packageFactKey]analysis.Fact) for _, dep := range act.deps { if dep.pkg == act.pkg { // Same package, different analysis (horizontal edge): // in-memory outputs of prerequisite analyzers // become inputs to this analysis pass. inputs[dep.a] = dep.result } else if dep.a == act.a { // (always true) // Same analysis, different package (vertical edge): // serialized facts produced by prerequisite analysis // become available to this analysis pass. inheritFacts(act, dep) } } // Run the analysis. pass := &analysis.Pass{ Analyzer: act.a, Fset: act.pkg.Fset, Files: act.pkg.Syntax, OtherFiles: act.pkg.OtherFiles, Pkg: act.pkg.Types, TypesInfo: act.pkg.TypesInfo, TypesSizes: act.pkg.TypesSizes, ResultOf: inputs, Report: func(d analysis.Diagnostic) { act.diagnostics = append(act.diagnostics, d) }, ImportObjectFact: act.importObjectFact, ExportObjectFact: act.exportObjectFact, ImportPackageFact: act.importPackageFact, ExportPackageFact: act.exportPackageFact, } act.pass = pass var err error if act.pkg.IllTyped && !pass.Analyzer.RunDespiteErrors { err = fmt.Errorf("analysis skipped due to errors in package") } else { act.result, err = pass.Analyzer.Run(pass) if err == nil { if got, want := reflect.TypeOf(act.result), pass.Analyzer.ResultType; got != want { err = fmt.Errorf( "internal error: on package %s, analyzer %s returned a result of type %v, but declared ResultType %v", pass.Pkg.Path(), pass.Analyzer, got, want) } } } act.err = err // disallow calls after Run pass.ExportObjectFact = nil pass.ExportPackageFact = nil } // inheritFacts populates act.facts with // those it obtains from its dependency, dep. func inheritFacts(act, dep *action) { serialize := dbg('s') for key, fact := range dep.objectFacts { // Filter out facts related to objects // that are irrelevant downstream // (equivalently: not in the compiler export data). if !exportedFrom(key.obj, dep.pkg.Types) { if false { log.Printf("%v: discarding %T fact from %s for %s: %s", act, fact, dep, key.obj, fact) } continue } // Optionally serialize/deserialize fact // to verify that it works across address spaces. if serialize { var err error fact, err = codeFact(fact) if err != nil { log.Panicf("internal error: encoding of %T fact failed in %v", fact, act) } } if false { log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.obj, fact) } act.objectFacts[key] = fact } for key, fact := range dep.packageFacts { // TODO: filter out facts that belong to // packages not mentioned in the export data // to prevent side channels. // Optionally serialize/deserialize fact // to verify that it works across address spaces // and is deterministic. if serialize { var err error fact, err = codeFact(fact) if err != nil { log.Panicf("internal error: encoding of %T fact failed in %v", fact, act) } } if false { log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.pkg.Path(), fact) } act.packageFacts[key] = fact } } // codeFact encodes then decodes a fact, // just to exercise that logic. func codeFact(fact analysis.Fact) (analysis.Fact, error) { // We encode facts one at a time. // A real modular driver would emit all facts // into one encoder to improve gob efficiency. var buf bytes.Buffer if err := gob.NewEncoder(&buf).Encode(fact); err != nil { return nil, err } // Encode it twice and assert that we get the same bits. // This helps detect nondeterministic Gob encoding (e.g. of maps). var buf2 bytes.Buffer if err := gob.NewEncoder(&buf2).Encode(fact); err != nil { return nil, err } if !bytes.Equal(buf.Bytes(), buf2.Bytes()) { return nil, fmt.Errorf("encoding of %T fact is nondeterministic", fact) } new := reflect.New(reflect.TypeOf(fact).Elem()).Interface().(analysis.Fact) if err := gob.NewDecoder(&buf).Decode(new); err != nil { return nil, err } return new, nil } // exportedFrom reports whether obj may be visible to a package that imports pkg. // This includes not just the exported members of pkg, but also unexported // constants, types, fields, and methods, perhaps belonging to oether packages, // that find there way into the API. // This is an overapproximation of the more accurate approach used by // gc export data, which walks the type graph, but it's much simpler. // // TODO(adonovan): do more accurate filtering by walking the type graph. func exportedFrom(obj types.Object, pkg *types.Package) bool { switch obj := obj.(type) { case *types.Func: return obj.Exported() && obj.Pkg() == pkg || obj.Type().(*types.Signature).Recv() != nil case *types.Var: return obj.Exported() && obj.Pkg() == pkg || obj.IsField() case *types.TypeName, *types.Const: return true } return false // Nil, Builtin, Label, or PkgName } // importObjectFact implements Pass.ImportObjectFact. // Given a non-nil pointer ptr of type *T, where *T satisfies Fact, // importObjectFact copies the fact value to *ptr. func (act *action) importObjectFact(obj types.Object, ptr analysis.Fact) bool { if obj == nil { panic("nil object") } key := objectFactKey{obj, factType(ptr)} if v, ok := act.objectFacts[key]; ok { reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem()) return true } return false } // exportObjectFact implements Pass.ExportObjectFact. func (act *action) exportObjectFact(obj types.Object, fact analysis.Fact) { if act.pass.ExportObjectFact == nil { log.Panicf("%s: Pass.ExportObjectFact(%s, %T) called after Run", act, obj, fact) } if obj.Pkg() != act.pkg.Types { log.Panicf("internal error: in analysis %s of package %s: Fact.Set(%s, %T): can't set facts on objects belonging another package", act.a, act.pkg, obj, fact) } key := objectFactKey{obj, factType(fact)} act.objectFacts[key] = fact // clobber any existing entry if dbg('f') { objstr := types.ObjectString(obj, (*types.Package).Name) fmt.Fprintf(os.Stderr, "%s: object %s has fact %s\n", act.pkg.Fset.Position(obj.Pos()), objstr, fact) } } // importPackageFact implements Pass.ImportPackageFact. // Given a non-nil pointer ptr of type *T, where *T satisfies Fact, // fact copies the fact value to *ptr. func (act *action) importPackageFact(pkg *types.Package, ptr analysis.Fact) bool { if pkg == nil { panic("nil package") } key := packageFactKey{pkg, factType(ptr)} if v, ok := act.packageFacts[key]; ok { reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem()) return true } return false } // exportPackageFact implements Pass.ExportPackageFact. func (act *action) exportPackageFact(fact analysis.Fact) { if act.pass.ExportPackageFact == nil { log.Panicf("%s: Pass.ExportPackageFact(%T) called after Run", act, fact) } key := packageFactKey{act.pass.Pkg, factType(fact)} act.packageFacts[key] = fact // clobber any existing entry if dbg('f') { fmt.Fprintf(os.Stderr, "%s: package %s has fact %s\n", act.pkg.Fset.Position(act.pass.Files[0].Pos()), act.pass.Pkg.Path(), fact) } } func factType(fact analysis.Fact) reflect.Type { t := reflect.TypeOf(fact) if t.Kind() != reflect.Ptr { log.Fatalf("invalid Fact type: got %T, want pointer", t) } return t } func dbg(b byte) bool { return strings.IndexByte(Debug, b) >= 0 }