diff --git a/pkg/golinters/goanalysis/analysisflags/flags.go b/pkg/golinters/goanalysis/analysisflags/flags.go new file mode 100644 index 00000000..a03a185f --- /dev/null +++ b/pkg/golinters/goanalysis/analysisflags/flags.go @@ -0,0 +1,344 @@ +// Copyright 2018 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package analysisflags defines helpers for processing flags of +// analysis driver tools. +package analysisflags + +import ( + "crypto/sha256" + "encoding/json" + "flag" + "fmt" + "go/token" + "io" + "io/ioutil" + "log" + "os" + "strconv" + "strings" + + "golang.org/x/tools/go/analysis" +) + +// flags common to all {single,multi,unit}checkers. +var ( + JSON = false // -json + Context = -1 // -c=N: if N>0, display offending line plus N lines of context +) + +// Parse creates a flag for each of the analyzer's flags, +// including (in multi mode) a flag named after the analyzer, +// parses the flags, then filters and returns the list of +// analyzers enabled by flags. +func Parse(analyzers []*analysis.Analyzer, multi bool) []*analysis.Analyzer { + // Connect each analysis flag to the command line as -analysis.flag. + enabled := make(map[*analysis.Analyzer]*triState) + for _, a := range analyzers { + var prefix string + + // Add -NAME flag to enable it. + if multi { + prefix = a.Name + "." + + enable := new(triState) + enableUsage := "enable " + a.Name + " analysis" + flag.Var(enable, a.Name, enableUsage) + enabled[a] = enable + } + + a.Flags.VisitAll(func(f *flag.Flag) { + if !multi && flag.Lookup(f.Name) != nil { + log.Printf("%s flag -%s would conflict with driver; skipping", a.Name, f.Name) + return + } + + name := prefix + f.Name + flag.Var(f.Value, name, f.Usage) + }) + } + + // standard flags: -flags, -V. + printflags := flag.Bool("flags", false, "print analyzer flags in JSON") + addVersionFlag() + + // flags common to all checkers + flag.BoolVar(&JSON, "json", JSON, "emit JSON output") + flag.IntVar(&Context, "c", Context, `display offending line with this many lines of context`) + + // Add shims for legacy vet flags to enable existing + // scripts that run vet to continue to work. + _ = flag.Bool("source", false, "no effect (deprecated)") + _ = flag.Bool("v", false, "no effect (deprecated)") + _ = flag.Bool("all", false, "no effect (deprecated)") + _ = flag.String("tags", "", "no effect (deprecated)") + for old, new := range vetLegacyFlags { + newFlag := flag.Lookup(new) + if newFlag != nil && flag.Lookup(old) == nil { + flag.Var(newFlag.Value, old, "deprecated alias for -"+new) + } + } + + flag.Parse() // (ExitOnError) + + // -flags: print flags so that go vet knows which ones are legitimate. + if *printflags { + printFlags() + os.Exit(0) + } + + // If any -NAME flag is true, run only those analyzers. Otherwise, + // if any -NAME flag is false, run all but those analyzers. + if multi { + var hasTrue, hasFalse bool + for _, ts := range enabled { + switch *ts { + case setTrue: + hasTrue = true + case setFalse: + hasFalse = true + } + } + + var keep []*analysis.Analyzer + if hasTrue { + for _, a := range analyzers { + if *enabled[a] == setTrue { + keep = append(keep, a) + } + } + analyzers = keep + } else if hasFalse { + for _, a := range analyzers { + if *enabled[a] != setFalse { + keep = append(keep, a) + } + } + analyzers = keep + } + } + + return analyzers +} + +func printFlags() { + type jsonFlag struct { + Name string + Bool bool + Usage string + } + var flags []jsonFlag = nil + flag.VisitAll(func(f *flag.Flag) { + // Don't report {single,multi}checker debugging + // flags as these have no effect on unitchecker + // (as invoked by 'go vet'). + switch f.Name { + case "debug", "cpuprofile", "memprofile", "trace": + return + } + + b, ok := f.Value.(interface{ IsBoolFlag() bool }) + isBool := ok && b.IsBoolFlag() + flags = append(flags, jsonFlag{f.Name, isBool, f.Usage}) + }) + data, err := json.MarshalIndent(flags, "", "\t") + if err != nil { + log.Fatal(err) + } + os.Stdout.Write(data) +} + +// addVersionFlag registers a -V flag that, if set, +// prints the executable version and exits 0. +// +// If the -V flag already exists — for example, because it was already +// registered by a call to cmd/internal/objabi.AddVersionFlag — then +// addVersionFlag does nothing. +func addVersionFlag() { + if flag.Lookup("V") == nil { + flag.Var(versionFlag{}, "V", "print version and exit") + } +} + +// versionFlag minimally complies with the -V protocol required by "go vet". +type versionFlag struct{} + +func (versionFlag) IsBoolFlag() bool { return true } +func (versionFlag) Get() interface{} { return nil } +func (versionFlag) String() string { return "" } +func (versionFlag) Set(s string) error { + if s != "full" { + log.Fatalf("unsupported flag value: -V=%s", s) + } + + // This replicates the miminal subset of + // cmd/internal/objabi.AddVersionFlag, which is private to the + // go tool yet forms part of our command-line interface. + // TODO(adonovan): clarify the contract. + + // Print the tool version so the build system can track changes. + // Formats: + // $progname version devel ... buildID=... + // $progname version go1.9.1 + progname := os.Args[0] + f, err := os.Open(progname) + if err != nil { + log.Fatal(err) + } + h := sha256.New() + if _, err := io.Copy(h, f); err != nil { + log.Fatal(err) + } + f.Close() + fmt.Printf("%s version devel comments-go-here buildID=%02x\n", + progname, string(h.Sum(nil))) + os.Exit(0) + return nil +} + +// A triState is a boolean that knows whether +// it has been set to either true or false. +// It is used to identify whether a flag appears; +// the standard boolean flag cannot +// distinguish missing from unset. +// It also satisfies flag.Value. +type triState int + +const ( + unset triState = iota + setTrue + setFalse +) + +func triStateFlag(name string, value triState, usage string) *triState { + flag.Var(&value, name, usage) + return &value +} + +// triState implements flag.Value, flag.Getter, and flag.boolFlag. +// They work like boolean flags: we can say vet -printf as well as vet -printf=true +func (ts *triState) Get() interface{} { + return *ts == setTrue +} + +func (ts triState) isTrue() bool { + return ts == setTrue +} + +func (ts *triState) Set(value string) error { + b, err := strconv.ParseBool(value) + if err != nil { + // This error message looks poor but package "flag" adds + // "invalid boolean value %q for -NAME: %s" + return fmt.Errorf("want true or false") + } + if b { + *ts = setTrue + } else { + *ts = setFalse + } + return nil +} + +func (ts *triState) String() string { + switch *ts { + case unset: + return "true" + case setTrue: + return "true" + case setFalse: + return "false" + } + panic("not reached") +} + +func (ts triState) IsBoolFlag() bool { + return true +} + +// Legacy flag support + +// vetLegacyFlags maps flags used by legacy vet to their corresponding +// new names. The old names will continue to work. +var vetLegacyFlags = map[string]string{ + // Analyzer name changes + "bool": "bools", + "buildtags": "buildtag", + "methods": "stdmethods", + "rangeloops": "loopclosure", + + // Analyzer flags + "compositewhitelist": "composites.whitelist", + "printfuncs": "printf.funcs", + "shadowstrict": "shadow.strict", + "unusedfuncs": "unusedresult.funcs", + "unusedstringmethods": "unusedresult.stringmethods", +} + +// ---- output helpers common to all drivers ---- + +// PrintPlain prints a diagnostic in plain text form, +// with context specified by the -c flag. +func PrintPlain(fset *token.FileSet, diag analysis.Diagnostic) { + posn := fset.Position(diag.Pos) + fmt.Fprintf(os.Stderr, "%s: %s\n", posn, diag.Message) + + // -c=N: show offending line plus N lines of context. + if Context >= 0 { + data, _ := ioutil.ReadFile(posn.Filename) + lines := strings.Split(string(data), "\n") + for i := posn.Line - Context; i <= posn.Line+Context; i++ { + if 1 <= i && i <= len(lines) { + fmt.Fprintf(os.Stderr, "%d\t%s\n", i, lines[i-1]) + } + } + } +} + +// A JSONTree is a mapping from package ID to analysis name to result. +// Each result is either a jsonError or a list of jsonDiagnostic. +type JSONTree map[string]map[string]interface{} + +// Add adds the result of analysis 'name' on package 'id'. +// The result is either a list of diagnostics or an error. +func (tree JSONTree) Add(fset *token.FileSet, id, name string, diags []analysis.Diagnostic, err error) { + var v interface{} + if err != nil { + type jsonError struct { + Err string `json:"error"` + } + v = jsonError{err.Error()} + } else if len(diags) > 0 { + type jsonDiagnostic struct { + Category string `json:"category,omitempty"` + Posn string `json:"posn"` + Message string `json:"message"` + } + var diagnostics []jsonDiagnostic + for _, f := range diags { + diagnostics = append(diagnostics, jsonDiagnostic{ + Category: f.Category, + Posn: fset.Position(f.Pos).String(), + Message: f.Message, + }) + } + v = diagnostics + } + if v != nil { + m, ok := tree[id] + if !ok { + m = make(map[string]interface{}) + tree[id] = m + } + m[name] = v + } +} + +func (tree JSONTree) Print() { + data, err := json.MarshalIndent(tree, "", "\t") + if err != nil { + log.Panicf("internal error: JSON marshalling failed: %v", err) + } + fmt.Printf("%s\n", data) +} diff --git a/pkg/golinters/goanalysis/checker/checker.go b/pkg/golinters/goanalysis/checker/checker.go new file mode 100644 index 00000000..ec80606a --- /dev/null +++ b/pkg/golinters/goanalysis/checker/checker.go @@ -0,0 +1,708 @@ +// checker is a partial copy of https://github.com/golang/tools/blob/master/go/analysis/internal/checker +// Copyright 2018 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package checker defines the implementation of the checker commands. +// The same code drives the multi-analysis driver, the single-analysis +// driver that is conventionally provided for convenience along with +// each analysis package, and the test driver. +package checker + +import ( + "bytes" + "encoding/gob" + "flag" + "fmt" + "go/token" + "go/types" + "log" + "os" + "reflect" + "runtime" + "runtime/pprof" + "runtime/trace" + "sort" + "strings" + "sync" + "time" + + "golang.org/x/tools/go/analysis" + "golang.org/x/tools/go/packages" + + "github.com/golangci/golangci-lint/pkg/golinters/goanalysis/analysisflags" +) + +var ( + // Debug is a set of single-letter flags: + // + // f show [f]acts as they are created + // p disable [p]arallel execution of analyzers + // s do additional [s]anity checks on fact types and serialization + // t show [t]iming info (NB: use 'p' flag to avoid GC/scheduler noise) + // v show [v]erbose logging + // + Debug = "" + + // Log files for optional performance tracing. + CPUProfile, MemProfile, Trace string +) + +// RegisterFlags registers command-line flags used by the analysis driver. +func RegisterFlags() { + // When adding flags here, remember to update + // the list of suppressed flags in analysisflags. + + flag.StringVar(&Debug, "debug", Debug, `debug flags, any subset of "fpstv"`) + + flag.StringVar(&CPUProfile, "cpuprofile", "", "write CPU profile to this file") + flag.StringVar(&MemProfile, "memprofile", "", "write memory profile to this file") + flag.StringVar(&Trace, "trace", "", "write trace log to this file") +} + +// Run loads the packages specified by args using go/packages, +// then applies the specified analyzers to them. +// Analysis flags must already have been set. +// It provides most of the logic for the main functions of both the +// singlechecker and the multi-analysis commands. +// It returns the appropriate exit code. +func Run(args []string, analyzers []*analysis.Analyzer) (exitcode int) { + if CPUProfile != "" { + f, err := os.Create(CPUProfile) + if err != nil { + log.Fatal(err) + } + if err := pprof.StartCPUProfile(f); err != nil { + log.Fatal(err) + } + // NB: profile won't be written in case of error. + defer pprof.StopCPUProfile() + } + + if Trace != "" { + f, err := os.Create(Trace) + if err != nil { + log.Fatal(err) + } + if err := trace.Start(f); err != nil { + log.Fatal(err) + } + // NB: trace log won't be written in case of error. + defer func() { + trace.Stop() + log.Printf("To view the trace, run:\n$ go tool trace view %s", Trace) + }() + } + + if MemProfile != "" { + f, err := os.Create(MemProfile) + if err != nil { + log.Fatal(err) + } + // NB: memprofile won't be written in case of error. + defer func() { + runtime.GC() // get up-to-date statistics + if err := pprof.WriteHeapProfile(f); err != nil { + log.Fatalf("Writing memory profile: %v", err) + } + f.Close() + }() + } + + // Load the packages. + if dbg('v') { + log.SetPrefix("") + log.SetFlags(log.Lmicroseconds) // display timing + log.Printf("load %s", args) + } + + // Optimization: if the selected analyzers don't produce/consume + // facts, we need source only for the initial packages. + allSyntax := needFacts(analyzers) + initial, err := load(args, allSyntax) + if err != nil { + log.Print(err) + return 1 // load errors + } + + // Print the results. + roots := analyze(initial, analyzers) + + return printDiagnostics(roots) +} + +// load loads the initial packages. +func load(patterns []string, allSyntax bool) ([]*packages.Package, error) { + mode := packages.LoadSyntax + if allSyntax { + mode = packages.LoadAllSyntax + } + conf := packages.Config{ + Mode: mode, + Tests: true, + } + initial, err := packages.Load(&conf, patterns...) + if err == nil { + if n := packages.PrintErrors(initial); n > 1 { + err = fmt.Errorf("%d errors during loading", n) + } else if n == 1 { + err = fmt.Errorf("error during loading") + } else if len(initial) == 0 { + err = fmt.Errorf("%s matched no packages", strings.Join(patterns, " ")) + } + } + + return initial, err +} + +// TestAnalyzer applies an analysis to a set of packages (and their +// dependencies if necessary) and returns the results. +// +// Facts about pkg are returned in a map keyed by object; package facts +// have a nil key. +// +// This entry point is used only by analysistest. +func TestAnalyzer(a *analysis.Analyzer, pkgs []*packages.Package) []*TestAnalyzerResult { + var results []*TestAnalyzerResult + for _, act := range analyze(pkgs, []*analysis.Analyzer{a}) { + facts := make(map[types.Object][]analysis.Fact) + for key, fact := range act.objectFacts { + if key.obj.Pkg() == act.pass.Pkg { + facts[key.obj] = append(facts[key.obj], fact) + } + } + for key, fact := range act.packageFacts { + if key.pkg == act.pass.Pkg { + facts[nil] = append(facts[nil], fact) + } + } + + results = append(results, &TestAnalyzerResult{act.pass, act.diagnostics, facts, act.result, act.err}) + } + return results +} + +type TestAnalyzerResult struct { + Pass *analysis.Pass + Diagnostics []analysis.Diagnostic + Facts map[types.Object][]analysis.Fact + Result interface{} + Err error +} + +func analyze(pkgs []*packages.Package, analyzers []*analysis.Analyzer) []*action { + // Construct the action graph. + if dbg('v') { + log.Printf("building graph of analysis passes") + } + + // Each graph node (action) is one unit of analysis. + // Edges express package-to-package (vertical) dependencies, + // and analysis-to-analysis (horizontal) dependencies. + type key struct { + *analysis.Analyzer + *packages.Package + } + actions := make(map[key]*action) + + var mkAction func(a *analysis.Analyzer, pkg *packages.Package) *action + mkAction = func(a *analysis.Analyzer, pkg *packages.Package) *action { + k := key{a, pkg} + act, ok := actions[k] + if !ok { + act = &action{a: a, pkg: pkg} + + // Add a dependency on each required analyzers. + for _, req := range a.Requires { + act.deps = append(act.deps, mkAction(req, pkg)) + } + + // An analysis that consumes/produces facts + // must run on the package's dependencies too. + if len(a.FactTypes) > 0 { + paths := make([]string, 0, len(pkg.Imports)) + for path := range pkg.Imports { + paths = append(paths, path) + } + sort.Strings(paths) // for determinism + for _, path := range paths { + dep := mkAction(a, pkg.Imports[path]) + act.deps = append(act.deps, dep) + } + } + + actions[k] = act + } + return act + } + + // Build nodes for initial packages. + var roots []*action + for _, a := range analyzers { + for _, pkg := range pkgs { + root := mkAction(a, pkg) + root.isroot = true + roots = append(roots, root) + } + } + + // Execute the graph in parallel. + execAll(roots) + + return roots +} + +// printDiagnostics prints the diagnostics for the root packages in either +// plain text or JSON format. JSON format also includes errors for any +// dependencies. +// +// It returns the exitcode: in plain mode, 0 for success, 1 for analysis +// errors, and 3 for diagnostics. We avoid 2 since the flag package uses +// it. JSON mode always succeeds at printing errors and diagnostics in a +// structured form to stdout. +func printDiagnostics(roots []*action) (exitcode int) { + // Print the output. + // + // Print diagnostics only for root packages, + // but errors for all packages. + printed := make(map[*action]bool) + var print func(*action) + var visitAll func(actions []*action) + visitAll = func(actions []*action) { + for _, act := range actions { + if !printed[act] { + printed[act] = true + visitAll(act.deps) + print(act) + } + } + } + + if analysisflags.JSON { + // JSON output + tree := make(analysisflags.JSONTree) + print = func(act *action) { + var diags []analysis.Diagnostic + if act.isroot { + diags = act.diagnostics + } + tree.Add(act.pkg.Fset, act.pkg.ID, act.a.Name, diags, act.err) + } + visitAll(roots) + tree.Print() + } else { + // plain text output + + // De-duplicate diagnostics by position (not token.Pos) to + // avoid double-reporting in source files that belong to + // multiple packages, such as foo and foo.test. + type key struct { + token.Position + *analysis.Analyzer + message string + } + seen := make(map[key]bool) + + print = func(act *action) { + if act.err != nil { + fmt.Fprintf(os.Stderr, "%s: %v\n", act.a.Name, act.err) + exitcode = 1 // analysis failed, at least partially + return + } + if act.isroot { + for _, diag := range act.diagnostics { + // We don't display a.Name/f.Category + // as most users don't care. + + posn := act.pkg.Fset.Position(diag.Pos) + k := key{posn, act.a, diag.Message} + if seen[k] { + continue // duplicate + } + seen[k] = true + + analysisflags.PrintPlain(act.pkg.Fset, diag) + } + } + } + visitAll(roots) + + if exitcode == 0 && len(seen) > 0 { + exitcode = 3 // successfuly produced diagnostics + } + } + + // Print timing info. + if dbg('t') { + if !dbg('p') { + log.Println("Warning: times are mostly GC/scheduler noise; use -debug=tp to disable parallelism") + } + var all []*action + var total time.Duration + for act := range printed { + all = append(all, act) + total += act.duration + } + sort.Slice(all, func(i, j int) bool { + return all[i].duration > all[j].duration + }) + + // Print actions accounting for 90% of the total. + var sum time.Duration + for _, act := range all { + fmt.Fprintf(os.Stderr, "%s\t%s\n", act.duration, act) + sum += act.duration + if sum >= total*9/10 { + break + } + } + } + + return exitcode +} + +// needFacts reports whether any analysis required by the specified set +// needs facts. If so, we must load the entire program from source. +func needFacts(analyzers []*analysis.Analyzer) bool { + seen := make(map[*analysis.Analyzer]bool) + var q []*analysis.Analyzer // for BFS + q = append(q, analyzers...) + for len(q) > 0 { + a := q[0] + q = q[1:] + if !seen[a] { + seen[a] = true + if len(a.FactTypes) > 0 { + return true + } + q = append(q, a.Requires...) + } + } + return false +} + +// An action represents one unit of analysis work: the application of +// one analysis to one package. Actions form a DAG, both within a +// package (as different analyzers are applied, either in sequence or +// parallel), and across packages (as dependencies are analyzed). +type action struct { + once sync.Once + a *analysis.Analyzer + pkg *packages.Package + pass *analysis.Pass + isroot bool + deps []*action + objectFacts map[objectFactKey]analysis.Fact + packageFacts map[packageFactKey]analysis.Fact + inputs map[*analysis.Analyzer]interface{} + result interface{} + diagnostics []analysis.Diagnostic + err error + duration time.Duration +} + +type objectFactKey struct { + obj types.Object + typ reflect.Type +} + +type packageFactKey struct { + pkg *types.Package + typ reflect.Type +} + +func (act *action) String() string { + return fmt.Sprintf("%s@%s", act.a, act.pkg) +} + +func execAll(actions []*action) { + sequential := dbg('p') + var wg sync.WaitGroup + for _, act := range actions { + wg.Add(1) + work := func(act *action) { + act.exec() + wg.Done() + } + if sequential { + work(act) + } else { + go work(act) + } + } + wg.Wait() +} + +func (act *action) exec() { act.once.Do(act.execOnce) } + +func (act *action) execOnce() { + // Analyze dependencies. + execAll(act.deps) + + // TODO(adonovan): uncomment this during profiling. + // It won't build pre-go1.11 but conditional compilation + // using build tags isn't warranted. + // + // ctx, task := trace.NewTask(context.Background(), "exec") + // trace.Log(ctx, "pass", act.String()) + // defer task.End() + + // Record time spent in this node but not its dependencies. + // In parallel mode, due to GC/scheduler contention, the + // time is 5x higher than in sequential mode, even with a + // semaphore limiting the number of threads here. + // So use -debug=tp. + if dbg('t') { + t0 := time.Now() + defer func() { act.duration = time.Since(t0) }() + } + + // Report an error if any dependency failed. + var failed []string + for _, dep := range act.deps { + if dep.err != nil { + failed = append(failed, dep.String()) + } + } + if failed != nil { + sort.Strings(failed) + act.err = fmt.Errorf("failed prerequisites: %s", strings.Join(failed, ", ")) + return + } + + // Plumb the output values of the dependencies + // into the inputs of this action. Also facts. + inputs := make(map[*analysis.Analyzer]interface{}) + act.objectFacts = make(map[objectFactKey]analysis.Fact) + act.packageFacts = make(map[packageFactKey]analysis.Fact) + for _, dep := range act.deps { + if dep.pkg == act.pkg { + // Same package, different analysis (horizontal edge): + // in-memory outputs of prerequisite analyzers + // become inputs to this analysis pass. + inputs[dep.a] = dep.result + + } else if dep.a == act.a { // (always true) + // Same analysis, different package (vertical edge): + // serialized facts produced by prerequisite analysis + // become available to this analysis pass. + inheritFacts(act, dep) + } + } + + // Run the analysis. + pass := &analysis.Pass{ + Analyzer: act.a, + Fset: act.pkg.Fset, + Files: act.pkg.Syntax, + OtherFiles: act.pkg.OtherFiles, + Pkg: act.pkg.Types, + TypesInfo: act.pkg.TypesInfo, + TypesSizes: act.pkg.TypesSizes, + ResultOf: inputs, + Report: func(d analysis.Diagnostic) { act.diagnostics = append(act.diagnostics, d) }, + ImportObjectFact: act.importObjectFact, + ExportObjectFact: act.exportObjectFact, + ImportPackageFact: act.importPackageFact, + ExportPackageFact: act.exportPackageFact, + } + act.pass = pass + + var err error + if act.pkg.IllTyped && !pass.Analyzer.RunDespiteErrors { + err = fmt.Errorf("analysis skipped due to errors in package") + } else { + act.result, err = pass.Analyzer.Run(pass) + if err == nil { + if got, want := reflect.TypeOf(act.result), pass.Analyzer.ResultType; got != want { + err = fmt.Errorf( + "internal error: on package %s, analyzer %s returned a result of type %v, but declared ResultType %v", + pass.Pkg.Path(), pass.Analyzer, got, want) + } + } + } + act.err = err + + // disallow calls after Run + pass.ExportObjectFact = nil + pass.ExportPackageFact = nil +} + +// inheritFacts populates act.facts with +// those it obtains from its dependency, dep. +func inheritFacts(act, dep *action) { + serialize := dbg('s') + + for key, fact := range dep.objectFacts { + // Filter out facts related to objects + // that are irrelevant downstream + // (equivalently: not in the compiler export data). + if !exportedFrom(key.obj, dep.pkg.Types) { + if false { + log.Printf("%v: discarding %T fact from %s for %s: %s", act, fact, dep, key.obj, fact) + } + continue + } + + // Optionally serialize/deserialize fact + // to verify that it works across address spaces. + if serialize { + var err error + fact, err = codeFact(fact) + if err != nil { + log.Panicf("internal error: encoding of %T fact failed in %v", fact, act) + } + } + + if false { + log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.obj, fact) + } + act.objectFacts[key] = fact + } + + for key, fact := range dep.packageFacts { + // TODO: filter out facts that belong to + // packages not mentioned in the export data + // to prevent side channels. + + // Optionally serialize/deserialize fact + // to verify that it works across address spaces + // and is deterministic. + if serialize { + var err error + fact, err = codeFact(fact) + if err != nil { + log.Panicf("internal error: encoding of %T fact failed in %v", fact, act) + } + } + + if false { + log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.pkg.Path(), fact) + } + act.packageFacts[key] = fact + } +} + +// codeFact encodes then decodes a fact, +// just to exercise that logic. +func codeFact(fact analysis.Fact) (analysis.Fact, error) { + // We encode facts one at a time. + // A real modular driver would emit all facts + // into one encoder to improve gob efficiency. + var buf bytes.Buffer + if err := gob.NewEncoder(&buf).Encode(fact); err != nil { + return nil, err + } + + // Encode it twice and assert that we get the same bits. + // This helps detect nondeterministic Gob encoding (e.g. of maps). + var buf2 bytes.Buffer + if err := gob.NewEncoder(&buf2).Encode(fact); err != nil { + return nil, err + } + if !bytes.Equal(buf.Bytes(), buf2.Bytes()) { + return nil, fmt.Errorf("encoding of %T fact is nondeterministic", fact) + } + + new := reflect.New(reflect.TypeOf(fact).Elem()).Interface().(analysis.Fact) + if err := gob.NewDecoder(&buf).Decode(new); err != nil { + return nil, err + } + return new, nil +} + +// exportedFrom reports whether obj may be visible to a package that imports pkg. +// This includes not just the exported members of pkg, but also unexported +// constants, types, fields, and methods, perhaps belonging to oether packages, +// that find there way into the API. +// This is an overapproximation of the more accurate approach used by +// gc export data, which walks the type graph, but it's much simpler. +// +// TODO(adonovan): do more accurate filtering by walking the type graph. +func exportedFrom(obj types.Object, pkg *types.Package) bool { + switch obj := obj.(type) { + case *types.Func: + return obj.Exported() && obj.Pkg() == pkg || + obj.Type().(*types.Signature).Recv() != nil + case *types.Var: + return obj.Exported() && obj.Pkg() == pkg || + obj.IsField() + case *types.TypeName, *types.Const: + return true + } + return false // Nil, Builtin, Label, or PkgName +} + +// importObjectFact implements Pass.ImportObjectFact. +// Given a non-nil pointer ptr of type *T, where *T satisfies Fact, +// importObjectFact copies the fact value to *ptr. +func (act *action) importObjectFact(obj types.Object, ptr analysis.Fact) bool { + if obj == nil { + panic("nil object") + } + key := objectFactKey{obj, factType(ptr)} + if v, ok := act.objectFacts[key]; ok { + reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem()) + return true + } + return false +} + +// exportObjectFact implements Pass.ExportObjectFact. +func (act *action) exportObjectFact(obj types.Object, fact analysis.Fact) { + if act.pass.ExportObjectFact == nil { + log.Panicf("%s: Pass.ExportObjectFact(%s, %T) called after Run", act, obj, fact) + } + + if obj.Pkg() != act.pkg.Types { + log.Panicf("internal error: in analysis %s of package %s: Fact.Set(%s, %T): can't set facts on objects belonging another package", + act.a, act.pkg, obj, fact) + } + + key := objectFactKey{obj, factType(fact)} + act.objectFacts[key] = fact // clobber any existing entry + if dbg('f') { + objstr := types.ObjectString(obj, (*types.Package).Name) + fmt.Fprintf(os.Stderr, "%s: object %s has fact %s\n", + act.pkg.Fset.Position(obj.Pos()), objstr, fact) + } +} + +// importPackageFact implements Pass.ImportPackageFact. +// Given a non-nil pointer ptr of type *T, where *T satisfies Fact, +// fact copies the fact value to *ptr. +func (act *action) importPackageFact(pkg *types.Package, ptr analysis.Fact) bool { + if pkg == nil { + panic("nil package") + } + key := packageFactKey{pkg, factType(ptr)} + if v, ok := act.packageFacts[key]; ok { + reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem()) + return true + } + return false +} + +// exportPackageFact implements Pass.ExportPackageFact. +func (act *action) exportPackageFact(fact analysis.Fact) { + if act.pass.ExportPackageFact == nil { + log.Panicf("%s: Pass.ExportPackageFact(%T) called after Run", act, fact) + } + + key := packageFactKey{act.pass.Pkg, factType(fact)} + act.packageFacts[key] = fact // clobber any existing entry + if dbg('f') { + fmt.Fprintf(os.Stderr, "%s: package %s has fact %s\n", + act.pkg.Fset.Position(act.pass.Files[0].Pos()), act.pass.Pkg.Path(), fact) + } +} + +func factType(fact analysis.Fact) reflect.Type { + t := reflect.TypeOf(fact) + if t.Kind() != reflect.Ptr { + log.Fatalf("invalid Fact type: got %T, want pointer", t) + } + return t +} + +func dbg(b byte) bool { return strings.IndexByte(Debug, b) >= 0 }